This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: sin^n on a closed interval is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ibliccsinexp | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 2 | ax-resscn | |- RR C_ CC |
|
| 3 | 1 2 | sstrdi | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ CC ) |
| 4 | 3 | sselda | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 5 | 4 | 3adantl3 | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 6 | 5 | sincld | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( sin ` x ) e. CC ) |
| 7 | simpl3 | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> N e. NN0 ) |
|
| 8 | 6 7 | expcld | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 9 | eqid | |- ( x e. CC |-> ( ( sin ` x ) ^ N ) ) = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
|
| 10 | 9 | fvmpt2 | |- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
| 11 | 5 8 10 | syl2anc | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
| 12 | 11 | eqcomd | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) |
| 13 | 12 | mpteq2dva | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( A [,] B ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) ) |
| 14 | nfmpt1 | |- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
|
| 15 | nfcv | |- F/_ x sin |
|
| 16 | sincn | |- sin e. ( CC -cn-> CC ) |
|
| 17 | 16 | a1i | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> sin e. ( CC -cn-> CC ) ) |
| 18 | simp3 | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> N e. NN0 ) |
|
| 19 | 15 17 18 | expcnfg | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
| 20 | 3 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( A [,] B ) C_ CC ) |
| 21 | 14 19 20 | cncfmptss | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 22 | 13 21 | eqeltrd | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 23 | cniccibl | |- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
|
| 24 | 22 23 | syld3an3 | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |