This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgioo.1 | |- ( ph -> A e. RR ) |
|
| itgioo.2 | |- ( ph -> B e. RR ) |
||
| itgioo.3 | |- ( ( ph /\ x e. ( A [,] B ) ) -> C e. CC ) |
||
| Assertion | itgioo | |- ( ph -> S. ( A (,) B ) C _d x = S. ( A [,] B ) C _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgioo.1 | |- ( ph -> A e. RR ) |
|
| 2 | itgioo.2 | |- ( ph -> B e. RR ) |
|
| 3 | itgioo.3 | |- ( ( ph /\ x e. ( A [,] B ) ) -> C e. CC ) |
|
| 4 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 5 | 4 | a1i | |- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 6 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 8 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 9 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 10 | icc0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ph -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 12 | 11 | biimpar | |- ( ( ph /\ B < A ) -> ( A [,] B ) = (/) ) |
| 13 | 12 | difeq1d | |- ( ( ph /\ B < A ) -> ( ( A [,] B ) \ ( A (,) B ) ) = ( (/) \ ( A (,) B ) ) ) |
| 14 | 0dif | |- ( (/) \ ( A (,) B ) ) = (/) |
|
| 15 | 0ss | |- (/) C_ { A , B } |
|
| 16 | 14 15 | eqsstri | |- ( (/) \ ( A (,) B ) ) C_ { A , B } |
| 17 | 13 16 | eqsstrdi | |- ( ( ph /\ B < A ) -> ( ( A [,] B ) \ ( A (,) B ) ) C_ { A , B } ) |
| 18 | uncom | |- ( { A , B } u. ( A (,) B ) ) = ( ( A (,) B ) u. { A , B } ) |
|
| 19 | 8 | adantr | |- ( ( ph /\ A <_ B ) -> A e. RR* ) |
| 20 | 9 | adantr | |- ( ( ph /\ A <_ B ) -> B e. RR* ) |
| 21 | simpr | |- ( ( ph /\ A <_ B ) -> A <_ B ) |
|
| 22 | prunioo | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
|
| 23 | 19 20 21 22 | syl3anc | |- ( ( ph /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 24 | 18 23 | eqtr2id | |- ( ( ph /\ A <_ B ) -> ( A [,] B ) = ( { A , B } u. ( A (,) B ) ) ) |
| 25 | 24 | difeq1d | |- ( ( ph /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) = ( ( { A , B } u. ( A (,) B ) ) \ ( A (,) B ) ) ) |
| 26 | difun2 | |- ( ( { A , B } u. ( A (,) B ) ) \ ( A (,) B ) ) = ( { A , B } \ ( A (,) B ) ) |
|
| 27 | 25 26 | eqtrdi | |- ( ( ph /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) = ( { A , B } \ ( A (,) B ) ) ) |
| 28 | difss | |- ( { A , B } \ ( A (,) B ) ) C_ { A , B } |
|
| 29 | 27 28 | eqsstrdi | |- ( ( ph /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) C_ { A , B } ) |
| 30 | 17 29 2 1 | ltlecasei | |- ( ph -> ( ( A [,] B ) \ ( A (,) B ) ) C_ { A , B } ) |
| 31 | 1 2 | prssd | |- ( ph -> { A , B } C_ RR ) |
| 32 | prfi | |- { A , B } e. Fin |
|
| 33 | ovolfi | |- ( ( { A , B } e. Fin /\ { A , B } C_ RR ) -> ( vol* ` { A , B } ) = 0 ) |
|
| 34 | 32 31 33 | sylancr | |- ( ph -> ( vol* ` { A , B } ) = 0 ) |
| 35 | ovolssnul | |- ( ( ( ( A [,] B ) \ ( A (,) B ) ) C_ { A , B } /\ { A , B } C_ RR /\ ( vol* ` { A , B } ) = 0 ) -> ( vol* ` ( ( A [,] B ) \ ( A (,) B ) ) ) = 0 ) |
|
| 36 | 30 31 34 35 | syl3anc | |- ( ph -> ( vol* ` ( ( A [,] B ) \ ( A (,) B ) ) ) = 0 ) |
| 37 | 5 7 36 3 | itgss3 | |- ( ph -> ( ( ( x e. ( A (,) B ) |-> C ) e. L^1 <-> ( x e. ( A [,] B ) |-> C ) e. L^1 ) /\ S. ( A (,) B ) C _d x = S. ( A [,] B ) C _d x ) ) |
| 38 | 37 | simprd | |- ( ph -> S. ( A (,) B ) C _d x = S. ( A [,] B ) C _d x ) |