This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg10 | |- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f0 | |- ( RR X. { 0 } ) e. dom S.1 |
|
| 2 | itg1val | |- ( ( RR X. { 0 } ) e. dom S.1 -> ( S.1 ` ( RR X. { 0 } ) ) = sum_ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( S.1 ` ( RR X. { 0 } ) ) = sum_ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) |
| 4 | rnxpss | |- ran ( RR X. { 0 } ) C_ { 0 } |
|
| 5 | ssdif0 | |- ( ran ( RR X. { 0 } ) C_ { 0 } <-> ( ran ( RR X. { 0 } ) \ { 0 } ) = (/) ) |
|
| 6 | 4 5 | mpbi | |- ( ran ( RR X. { 0 } ) \ { 0 } ) = (/) |
| 7 | 6 | sumeq1i | |- sum_ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) = sum_ x e. (/) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) |
| 8 | sum0 | |- sum_ x e. (/) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) = 0 |
|
| 9 | 3 7 8 | 3eqtri | |- ( S.1 ` ( RR X. { 0 } ) ) = 0 |