This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fmulc.2 | |- ( ph -> F e. dom S.1 ) |
|
| i1fmulc.3 | |- ( ph -> A e. RR ) |
||
| Assertion | i1fmulclem | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) = ( `' F " { ( B / A ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fmulc.2 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fmulc.3 | |- ( ph -> A e. RR ) |
|
| 3 | reex | |- RR e. _V |
|
| 4 | 3 | a1i | |- ( ph -> RR e. _V ) |
| 5 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 6 | 1 5 | syl | |- ( ph -> F : RR --> RR ) |
| 7 | 6 | ffnd | |- ( ph -> F Fn RR ) |
| 8 | eqidd | |- ( ( ph /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) |
|
| 9 | 4 2 7 8 | ofc1 | |- ( ( ph /\ z e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` z ) = ( A x. ( F ` z ) ) ) |
| 10 | 9 | ad4ant14 | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` z ) = ( A x. ( F ` z ) ) ) |
| 11 | 10 | eqeq1d | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` z ) = B <-> ( A x. ( F ` z ) ) = B ) ) |
| 12 | eqcom | |- ( ( F ` z ) = ( B / A ) <-> ( B / A ) = ( F ` z ) ) |
|
| 13 | simplr | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> B e. RR ) |
|
| 14 | 13 | recnd | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> B e. CC ) |
| 15 | 2 | ad3antrrr | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> A e. RR ) |
| 16 | 15 | recnd | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> A e. CC ) |
| 17 | 6 | ad2antrr | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> F : RR --> RR ) |
| 18 | 17 | ffvelcdmda | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( F ` z ) e. RR ) |
| 19 | 18 | recnd | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( F ` z ) e. CC ) |
| 20 | simpllr | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> A =/= 0 ) |
|
| 21 | 14 16 19 20 | divmuld | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( B / A ) = ( F ` z ) <-> ( A x. ( F ` z ) ) = B ) ) |
| 22 | 12 21 | bitrid | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( F ` z ) = ( B / A ) <-> ( A x. ( F ` z ) ) = B ) ) |
| 23 | 11 22 | bitr4d | |- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` z ) = B <-> ( F ` z ) = ( B / A ) ) ) |
| 24 | 23 | pm5.32da | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( ( z e. RR /\ ( ( ( RR X. { A } ) oF x. F ) ` z ) = B ) <-> ( z e. RR /\ ( F ` z ) = ( B / A ) ) ) ) |
| 25 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
| 26 | 25 | adantl | |- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 27 | fconstg | |- ( A e. RR -> ( RR X. { A } ) : RR --> { A } ) |
|
| 28 | 2 27 | syl | |- ( ph -> ( RR X. { A } ) : RR --> { A } ) |
| 29 | 2 | snssd | |- ( ph -> { A } C_ RR ) |
| 30 | 28 29 | fssd | |- ( ph -> ( RR X. { A } ) : RR --> RR ) |
| 31 | inidm | |- ( RR i^i RR ) = RR |
|
| 32 | 26 30 6 4 4 31 | off | |- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 33 | 32 | ad2antrr | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 34 | 33 | ffnd | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( ( RR X. { A } ) oF x. F ) Fn RR ) |
| 35 | fniniseg | |- ( ( ( RR X. { A } ) oF x. F ) Fn RR -> ( z e. ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) <-> ( z e. RR /\ ( ( ( RR X. { A } ) oF x. F ) ` z ) = B ) ) ) |
|
| 36 | 34 35 | syl | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( z e. ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) <-> ( z e. RR /\ ( ( ( RR X. { A } ) oF x. F ) ` z ) = B ) ) ) |
| 37 | 17 | ffnd | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> F Fn RR ) |
| 38 | fniniseg | |- ( F Fn RR -> ( z e. ( `' F " { ( B / A ) } ) <-> ( z e. RR /\ ( F ` z ) = ( B / A ) ) ) ) |
|
| 39 | 37 38 | syl | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( z e. ( `' F " { ( B / A ) } ) <-> ( z e. RR /\ ( F ` z ) = ( B / A ) ) ) ) |
| 40 | 24 36 39 | 3bitr4d | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( z e. ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) <-> z e. ( `' F " { ( B / A ) } ) ) ) |
| 41 | 40 | eqrdv | |- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) = ( `' F " { ( B / A ) } ) ) |