This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | rnmpo | |- ran F = { z | E. x e. A E. y e. B z = C } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 3 | 1 2 | eqtri | |- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 4 | 3 | rneqi | |- ran F = ran { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 5 | rnoprab2 | |- ran { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } = { z | E. x e. A E. y e. B z = C } |
|
| 6 | 4 5 | eqtri | |- ran F = { z | E. x e. A E. y e. B z = C } |