This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
| Assertion | i1fmul | |- ( ph -> ( F oF x. G ) e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
| 4 | 3 | adantl | |- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 5 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 6 | 1 5 | syl | |- ( ph -> F : RR --> RR ) |
| 7 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 8 | 2 7 | syl | |- ( ph -> G : RR --> RR ) |
| 9 | reex | |- RR e. _V |
|
| 10 | 9 | a1i | |- ( ph -> RR e. _V ) |
| 11 | inidm | |- ( RR i^i RR ) = RR |
|
| 12 | 4 6 8 10 10 11 | off | |- ( ph -> ( F oF x. G ) : RR --> RR ) |
| 13 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 14 | 1 13 | syl | |- ( ph -> ran F e. Fin ) |
| 15 | i1frn | |- ( G e. dom S.1 -> ran G e. Fin ) |
|
| 16 | 2 15 | syl | |- ( ph -> ran G e. Fin ) |
| 17 | xpfi | |- ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) |
|
| 18 | 14 16 17 | syl2anc | |- ( ph -> ( ran F X. ran G ) e. Fin ) |
| 19 | eqid | |- ( u e. ran F , v e. ran G |-> ( u x. v ) ) = ( u e. ran F , v e. ran G |-> ( u x. v ) ) |
|
| 20 | ovex | |- ( u x. v ) e. _V |
|
| 21 | 19 20 | fnmpoi | |- ( u e. ran F , v e. ran G |-> ( u x. v ) ) Fn ( ran F X. ran G ) |
| 22 | dffn4 | |- ( ( u e. ran F , v e. ran G |-> ( u x. v ) ) Fn ( ran F X. ran G ) <-> ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) |
|
| 23 | 21 22 | mpbi | |- ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) |
| 24 | fofi | |- ( ( ( ran F X. ran G ) e. Fin /\ ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) -> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) e. Fin ) |
|
| 25 | 18 23 24 | sylancl | |- ( ph -> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) e. Fin ) |
| 26 | eqid | |- ( x x. y ) = ( x x. y ) |
|
| 27 | rspceov | |- ( ( x e. ran F /\ y e. ran G /\ ( x x. y ) = ( x x. y ) ) -> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) |
|
| 28 | 26 27 | mp3an3 | |- ( ( x e. ran F /\ y e. ran G ) -> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) |
| 29 | ovex | |- ( x x. y ) e. _V |
|
| 30 | eqeq1 | |- ( w = ( x x. y ) -> ( w = ( u x. v ) <-> ( x x. y ) = ( u x. v ) ) ) |
|
| 31 | 30 | 2rexbidv | |- ( w = ( x x. y ) -> ( E. u e. ran F E. v e. ran G w = ( u x. v ) <-> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) ) |
| 32 | 29 31 | elab | |- ( ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } <-> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) |
| 33 | 28 32 | sylibr | |- ( ( x e. ran F /\ y e. ran G ) -> ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) |
| 34 | 33 | adantl | |- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) |
| 35 | 6 | ffnd | |- ( ph -> F Fn RR ) |
| 36 | dffn3 | |- ( F Fn RR <-> F : RR --> ran F ) |
|
| 37 | 35 36 | sylib | |- ( ph -> F : RR --> ran F ) |
| 38 | 8 | ffnd | |- ( ph -> G Fn RR ) |
| 39 | dffn3 | |- ( G Fn RR <-> G : RR --> ran G ) |
|
| 40 | 38 39 | sylib | |- ( ph -> G : RR --> ran G ) |
| 41 | 34 37 40 10 10 11 | off | |- ( ph -> ( F oF x. G ) : RR --> { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) |
| 42 | 41 | frnd | |- ( ph -> ran ( F oF x. G ) C_ { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) |
| 43 | 19 | rnmpo | |- ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) = { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } |
| 44 | 42 43 | sseqtrrdi | |- ( ph -> ran ( F oF x. G ) C_ ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) |
| 45 | 25 44 | ssfid | |- ( ph -> ran ( F oF x. G ) e. Fin ) |
| 46 | 12 | frnd | |- ( ph -> ran ( F oF x. G ) C_ RR ) |
| 47 | ax-resscn | |- RR C_ CC |
|
| 48 | 46 47 | sstrdi | |- ( ph -> ran ( F oF x. G ) C_ CC ) |
| 49 | 48 | ssdifd | |- ( ph -> ( ran ( F oF x. G ) \ { 0 } ) C_ ( CC \ { 0 } ) ) |
| 50 | 49 | sselda | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> y e. ( CC \ { 0 } ) ) |
| 51 | 1 2 | i1fmullem | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) = U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) |
| 52 | 50 51 | syldan | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) = U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) |
| 53 | difss | |- ( ran G \ { 0 } ) C_ ran G |
|
| 54 | ssfi | |- ( ( ran G e. Fin /\ ( ran G \ { 0 } ) C_ ran G ) -> ( ran G \ { 0 } ) e. Fin ) |
|
| 55 | 16 53 54 | sylancl | |- ( ph -> ( ran G \ { 0 } ) e. Fin ) |
| 56 | i1fima | |- ( F e. dom S.1 -> ( `' F " { ( y / z ) } ) e. dom vol ) |
|
| 57 | 1 56 | syl | |- ( ph -> ( `' F " { ( y / z ) } ) e. dom vol ) |
| 58 | i1fima | |- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
|
| 59 | 2 58 | syl | |- ( ph -> ( `' G " { z } ) e. dom vol ) |
| 60 | inmbl | |- ( ( ( `' F " { ( y / z ) } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
|
| 61 | 57 59 60 | syl2anc | |- ( ph -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 62 | 61 | ralrimivw | |- ( ph -> A. z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 63 | finiunmbl | |- ( ( ( ran G \ { 0 } ) e. Fin /\ A. z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
|
| 64 | 55 62 63 | syl2anc | |- ( ph -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 65 | 64 | adantr | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 66 | 52 65 | eqeltrd | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) e. dom vol ) |
| 67 | mblvol | |- ( ( `' ( F oF x. G ) " { y } ) e. dom vol -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` ( `' ( F oF x. G ) " { y } ) ) ) |
|
| 68 | 66 67 | syl | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` ( `' ( F oF x. G ) " { y } ) ) ) |
| 69 | mblss | |- ( ( `' ( F oF x. G ) " { y } ) e. dom vol -> ( `' ( F oF x. G ) " { y } ) C_ RR ) |
|
| 70 | 66 69 | syl | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) C_ RR ) |
| 71 | 55 | adantr | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( ran G \ { 0 } ) e. Fin ) |
| 72 | inss2 | |- ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
|
| 73 | 72 | a1i | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
| 74 | 59 | ad2antrr | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) e. dom vol ) |
| 75 | mblss | |- ( ( `' G " { z } ) e. dom vol -> ( `' G " { z } ) C_ RR ) |
|
| 76 | 74 75 | syl | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ RR ) |
| 77 | mblvol | |- ( ( `' G " { z } ) e. dom vol -> ( vol ` ( `' G " { z } ) ) = ( vol* ` ( `' G " { z } ) ) ) |
|
| 78 | 74 77 | syl | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = ( vol* ` ( `' G " { z } ) ) ) |
| 79 | 2 | adantr | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> G e. dom S.1 ) |
| 80 | i1fima2sn | |- ( ( G e. dom S.1 /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) e. RR ) |
|
| 81 | 79 80 | sylan | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) e. RR ) |
| 82 | 78 81 | eqeltrrd | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol* ` ( `' G " { z } ) ) e. RR ) |
| 83 | ovolsscl | |- ( ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) /\ ( `' G " { z } ) C_ RR /\ ( vol* ` ( `' G " { z } ) ) e. RR ) -> ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
|
| 84 | 73 76 82 83 | syl3anc | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 85 | 71 84 | fsumrecl | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 86 | 52 | fveq2d | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 87 | mblss | |- ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) |
|
| 88 | 61 87 | syl | |- ( ph -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) |
| 89 | 88 | ad2antrr | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) |
| 90 | 89 84 | jca | |- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) |
| 91 | 90 | ralrimiva | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> A. z e. ( ran G \ { 0 } ) ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) |
| 92 | ovolfiniun | |- ( ( ( ran G \ { 0 } ) e. Fin /\ A. z e. ( ran G \ { 0 } ) ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) -> ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) |
|
| 93 | 71 91 92 | syl2anc | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 94 | 86 93 | eqbrtrd | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 95 | ovollecl | |- ( ( ( `' ( F oF x. G ) " { y } ) C_ RR /\ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR /\ ( vol* ` ( `' ( F oF x. G ) " { y } ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) |
|
| 96 | 70 85 94 95 | syl3anc | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) |
| 97 | 68 96 | eqeltrd | |- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) |
| 98 | 12 45 66 97 | i1fd | |- ( ph -> ( F oF x. G ) e. dom S.1 ) |