This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hashxp . (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashxplem.1 | |- B e. Fin |
|
| Assertion | hashxplem | |- ( A e. Fin -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashxplem.1 | |- B e. Fin |
|
| 2 | xpeq1 | |- ( x = (/) -> ( x X. B ) = ( (/) X. B ) ) |
|
| 3 | 2 | fveq2d | |- ( x = (/) -> ( # ` ( x X. B ) ) = ( # ` ( (/) X. B ) ) ) |
| 4 | fveq2 | |- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
|
| 5 | 4 | oveq1d | |- ( x = (/) -> ( ( # ` x ) x. ( # ` B ) ) = ( ( # ` (/) ) x. ( # ` B ) ) ) |
| 6 | 3 5 | eqeq12d | |- ( x = (/) -> ( ( # ` ( x X. B ) ) = ( ( # ` x ) x. ( # ` B ) ) <-> ( # ` ( (/) X. B ) ) = ( ( # ` (/) ) x. ( # ` B ) ) ) ) |
| 7 | xpeq1 | |- ( x = y -> ( x X. B ) = ( y X. B ) ) |
|
| 8 | 7 | fveq2d | |- ( x = y -> ( # ` ( x X. B ) ) = ( # ` ( y X. B ) ) ) |
| 9 | fveq2 | |- ( x = y -> ( # ` x ) = ( # ` y ) ) |
|
| 10 | 9 | oveq1d | |- ( x = y -> ( ( # ` x ) x. ( # ` B ) ) = ( ( # ` y ) x. ( # ` B ) ) ) |
| 11 | 8 10 | eqeq12d | |- ( x = y -> ( ( # ` ( x X. B ) ) = ( ( # ` x ) x. ( # ` B ) ) <-> ( # ` ( y X. B ) ) = ( ( # ` y ) x. ( # ` B ) ) ) ) |
| 12 | xpeq1 | |- ( x = ( y u. { z } ) -> ( x X. B ) = ( ( y u. { z } ) X. B ) ) |
|
| 13 | 12 | fveq2d | |- ( x = ( y u. { z } ) -> ( # ` ( x X. B ) ) = ( # ` ( ( y u. { z } ) X. B ) ) ) |
| 14 | fveq2 | |- ( x = ( y u. { z } ) -> ( # ` x ) = ( # ` ( y u. { z } ) ) ) |
|
| 15 | 14 | oveq1d | |- ( x = ( y u. { z } ) -> ( ( # ` x ) x. ( # ` B ) ) = ( ( # ` ( y u. { z } ) ) x. ( # ` B ) ) ) |
| 16 | 13 15 | eqeq12d | |- ( x = ( y u. { z } ) -> ( ( # ` ( x X. B ) ) = ( ( # ` x ) x. ( # ` B ) ) <-> ( # ` ( ( y u. { z } ) X. B ) ) = ( ( # ` ( y u. { z } ) ) x. ( # ` B ) ) ) ) |
| 17 | xpeq1 | |- ( x = A -> ( x X. B ) = ( A X. B ) ) |
|
| 18 | 17 | fveq2d | |- ( x = A -> ( # ` ( x X. B ) ) = ( # ` ( A X. B ) ) ) |
| 19 | fveq2 | |- ( x = A -> ( # ` x ) = ( # ` A ) ) |
|
| 20 | 19 | oveq1d | |- ( x = A -> ( ( # ` x ) x. ( # ` B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |
| 21 | 18 20 | eqeq12d | |- ( x = A -> ( ( # ` ( x X. B ) ) = ( ( # ` x ) x. ( # ` B ) ) <-> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) ) |
| 22 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 23 | 22 | nn0cnd | |- ( B e. Fin -> ( # ` B ) e. CC ) |
| 24 | 23 | mul02d | |- ( B e. Fin -> ( 0 x. ( # ` B ) ) = 0 ) |
| 25 | 1 24 | ax-mp | |- ( 0 x. ( # ` B ) ) = 0 |
| 26 | hash0 | |- ( # ` (/) ) = 0 |
|
| 27 | 26 | oveq1i | |- ( ( # ` (/) ) x. ( # ` B ) ) = ( 0 x. ( # ` B ) ) |
| 28 | 0xp | |- ( (/) X. B ) = (/) |
|
| 29 | 28 | fveq2i | |- ( # ` ( (/) X. B ) ) = ( # ` (/) ) |
| 30 | 29 26 | eqtri | |- ( # ` ( (/) X. B ) ) = 0 |
| 31 | 25 27 30 | 3eqtr4ri | |- ( # ` ( (/) X. B ) ) = ( ( # ` (/) ) x. ( # ` B ) ) |
| 32 | oveq1 | |- ( ( # ` ( y X. B ) ) = ( ( # ` y ) x. ( # ` B ) ) -> ( ( # ` ( y X. B ) ) + ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( # ` B ) ) ) |
|
| 33 | 32 | adantl | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( # ` ( y X. B ) ) = ( ( # ` y ) x. ( # ` B ) ) ) -> ( ( # ` ( y X. B ) ) + ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( # ` B ) ) ) |
| 34 | xpundir | |- ( ( y u. { z } ) X. B ) = ( ( y X. B ) u. ( { z } X. B ) ) |
|
| 35 | 34 | fveq2i | |- ( # ` ( ( y u. { z } ) X. B ) ) = ( # ` ( ( y X. B ) u. ( { z } X. B ) ) ) |
| 36 | xpfi | |- ( ( y e. Fin /\ B e. Fin ) -> ( y X. B ) e. Fin ) |
|
| 37 | 1 36 | mpan2 | |- ( y e. Fin -> ( y X. B ) e. Fin ) |
| 38 | inxp | |- ( ( y X. B ) i^i ( { z } X. B ) ) = ( ( y i^i { z } ) X. ( B i^i B ) ) |
|
| 39 | disjsn | |- ( ( y i^i { z } ) = (/) <-> -. z e. y ) |
|
| 40 | 39 | biimpri | |- ( -. z e. y -> ( y i^i { z } ) = (/) ) |
| 41 | 40 | xpeq1d | |- ( -. z e. y -> ( ( y i^i { z } ) X. ( B i^i B ) ) = ( (/) X. ( B i^i B ) ) ) |
| 42 | 0xp | |- ( (/) X. ( B i^i B ) ) = (/) |
|
| 43 | 41 42 | eqtrdi | |- ( -. z e. y -> ( ( y i^i { z } ) X. ( B i^i B ) ) = (/) ) |
| 44 | 38 43 | eqtrid | |- ( -. z e. y -> ( ( y X. B ) i^i ( { z } X. B ) ) = (/) ) |
| 45 | snfi | |- { z } e. Fin |
|
| 46 | xpfi | |- ( ( { z } e. Fin /\ B e. Fin ) -> ( { z } X. B ) e. Fin ) |
|
| 47 | 45 1 46 | mp2an | |- ( { z } X. B ) e. Fin |
| 48 | hashun | |- ( ( ( y X. B ) e. Fin /\ ( { z } X. B ) e. Fin /\ ( ( y X. B ) i^i ( { z } X. B ) ) = (/) ) -> ( # ` ( ( y X. B ) u. ( { z } X. B ) ) ) = ( ( # ` ( y X. B ) ) + ( # ` ( { z } X. B ) ) ) ) |
|
| 49 | 47 48 | mp3an2 | |- ( ( ( y X. B ) e. Fin /\ ( ( y X. B ) i^i ( { z } X. B ) ) = (/) ) -> ( # ` ( ( y X. B ) u. ( { z } X. B ) ) ) = ( ( # ` ( y X. B ) ) + ( # ` ( { z } X. B ) ) ) ) |
| 50 | 37 44 49 | syl2an | |- ( ( y e. Fin /\ -. z e. y ) -> ( # ` ( ( y X. B ) u. ( { z } X. B ) ) ) = ( ( # ` ( y X. B ) ) + ( # ` ( { z } X. B ) ) ) ) |
| 51 | snex | |- { z } e. _V |
|
| 52 | 1 | elexi | |- B e. _V |
| 53 | 51 52 | xpcomen | |- ( { z } X. B ) ~~ ( B X. { z } ) |
| 54 | vex | |- z e. _V |
|
| 55 | 52 54 | xpsnen | |- ( B X. { z } ) ~~ B |
| 56 | 53 55 | entri | |- ( { z } X. B ) ~~ B |
| 57 | hashen | |- ( ( ( { z } X. B ) e. Fin /\ B e. Fin ) -> ( ( # ` ( { z } X. B ) ) = ( # ` B ) <-> ( { z } X. B ) ~~ B ) ) |
|
| 58 | 47 1 57 | mp2an | |- ( ( # ` ( { z } X. B ) ) = ( # ` B ) <-> ( { z } X. B ) ~~ B ) |
| 59 | 56 58 | mpbir | |- ( # ` ( { z } X. B ) ) = ( # ` B ) |
| 60 | 59 | oveq2i | |- ( ( # ` ( y X. B ) ) + ( # ` ( { z } X. B ) ) ) = ( ( # ` ( y X. B ) ) + ( # ` B ) ) |
| 61 | 50 60 | eqtrdi | |- ( ( y e. Fin /\ -. z e. y ) -> ( # ` ( ( y X. B ) u. ( { z } X. B ) ) ) = ( ( # ` ( y X. B ) ) + ( # ` B ) ) ) |
| 62 | 35 61 | eqtrid | |- ( ( y e. Fin /\ -. z e. y ) -> ( # ` ( ( y u. { z } ) X. B ) ) = ( ( # ` ( y X. B ) ) + ( # ` B ) ) ) |
| 63 | 62 | adantr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( # ` ( y X. B ) ) = ( ( # ` y ) x. ( # ` B ) ) ) -> ( # ` ( ( y u. { z } ) X. B ) ) = ( ( # ` ( y X. B ) ) + ( # ` B ) ) ) |
| 64 | hashunsng | |- ( z e. _V -> ( ( y e. Fin /\ -. z e. y ) -> ( # ` ( y u. { z } ) ) = ( ( # ` y ) + 1 ) ) ) |
|
| 65 | 54 64 | ax-mp | |- ( ( y e. Fin /\ -. z e. y ) -> ( # ` ( y u. { z } ) ) = ( ( # ` y ) + 1 ) ) |
| 66 | 65 | oveq1d | |- ( ( y e. Fin /\ -. z e. y ) -> ( ( # ` ( y u. { z } ) ) x. ( # ` B ) ) = ( ( ( # ` y ) + 1 ) x. ( # ` B ) ) ) |
| 67 | hashcl | |- ( y e. Fin -> ( # ` y ) e. NN0 ) |
|
| 68 | 67 | nn0cnd | |- ( y e. Fin -> ( # ` y ) e. CC ) |
| 69 | ax-1cn | |- 1 e. CC |
|
| 70 | nn0cn | |- ( ( # ` B ) e. NN0 -> ( # ` B ) e. CC ) |
|
| 71 | 1 22 70 | mp2b | |- ( # ` B ) e. CC |
| 72 | adddir | |- ( ( ( # ` y ) e. CC /\ 1 e. CC /\ ( # ` B ) e. CC ) -> ( ( ( # ` y ) + 1 ) x. ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( 1 x. ( # ` B ) ) ) ) |
|
| 73 | 69 71 72 | mp3an23 | |- ( ( # ` y ) e. CC -> ( ( ( # ` y ) + 1 ) x. ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( 1 x. ( # ` B ) ) ) ) |
| 74 | 68 73 | syl | |- ( y e. Fin -> ( ( ( # ` y ) + 1 ) x. ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( 1 x. ( # ` B ) ) ) ) |
| 75 | 71 | mullidi | |- ( 1 x. ( # ` B ) ) = ( # ` B ) |
| 76 | 75 | oveq2i | |- ( ( ( # ` y ) x. ( # ` B ) ) + ( 1 x. ( # ` B ) ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( # ` B ) ) |
| 77 | 74 76 | eqtrdi | |- ( y e. Fin -> ( ( ( # ` y ) + 1 ) x. ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( # ` B ) ) ) |
| 78 | 77 | adantr | |- ( ( y e. Fin /\ -. z e. y ) -> ( ( ( # ` y ) + 1 ) x. ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( # ` B ) ) ) |
| 79 | 66 78 | eqtrd | |- ( ( y e. Fin /\ -. z e. y ) -> ( ( # ` ( y u. { z } ) ) x. ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( # ` B ) ) ) |
| 80 | 79 | adantr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( # ` ( y X. B ) ) = ( ( # ` y ) x. ( # ` B ) ) ) -> ( ( # ` ( y u. { z } ) ) x. ( # ` B ) ) = ( ( ( # ` y ) x. ( # ` B ) ) + ( # ` B ) ) ) |
| 81 | 33 63 80 | 3eqtr4d | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( # ` ( y X. B ) ) = ( ( # ` y ) x. ( # ` B ) ) ) -> ( # ` ( ( y u. { z } ) X. B ) ) = ( ( # ` ( y u. { z } ) ) x. ( # ` B ) ) ) |
| 82 | 81 | ex | |- ( ( y e. Fin /\ -. z e. y ) -> ( ( # ` ( y X. B ) ) = ( ( # ` y ) x. ( # ` B ) ) -> ( # ` ( ( y u. { z } ) X. B ) ) = ( ( # ` ( y u. { z } ) ) x. ( # ` B ) ) ) ) |
| 83 | 6 11 16 21 31 82 | findcard2s | |- ( A e. Fin -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |