This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of Suppes p. 52. (Contributed by NM, 30-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpundir | |- ( ( A u. B ) X. C ) = ( ( A X. C ) u. ( B X. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp | |- ( ( A u. B ) X. C ) = { <. x , y >. | ( x e. ( A u. B ) /\ y e. C ) } |
|
| 2 | df-xp | |- ( A X. C ) = { <. x , y >. | ( x e. A /\ y e. C ) } |
|
| 3 | df-xp | |- ( B X. C ) = { <. x , y >. | ( x e. B /\ y e. C ) } |
|
| 4 | 2 3 | uneq12i | |- ( ( A X. C ) u. ( B X. C ) ) = ( { <. x , y >. | ( x e. A /\ y e. C ) } u. { <. x , y >. | ( x e. B /\ y e. C ) } ) |
| 5 | elun | |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
|
| 6 | 5 | anbi1i | |- ( ( x e. ( A u. B ) /\ y e. C ) <-> ( ( x e. A \/ x e. B ) /\ y e. C ) ) |
| 7 | andir | |- ( ( ( x e. A \/ x e. B ) /\ y e. C ) <-> ( ( x e. A /\ y e. C ) \/ ( x e. B /\ y e. C ) ) ) |
|
| 8 | 6 7 | bitri | |- ( ( x e. ( A u. B ) /\ y e. C ) <-> ( ( x e. A /\ y e. C ) \/ ( x e. B /\ y e. C ) ) ) |
| 9 | 8 | opabbii | |- { <. x , y >. | ( x e. ( A u. B ) /\ y e. C ) } = { <. x , y >. | ( ( x e. A /\ y e. C ) \/ ( x e. B /\ y e. C ) ) } |
| 10 | unopab | |- ( { <. x , y >. | ( x e. A /\ y e. C ) } u. { <. x , y >. | ( x e. B /\ y e. C ) } ) = { <. x , y >. | ( ( x e. A /\ y e. C ) \/ ( x e. B /\ y e. C ) ) } |
|
| 11 | 9 10 | eqtr4i | |- { <. x , y >. | ( x e. ( A u. B ) /\ y e. C ) } = ( { <. x , y >. | ( x e. A /\ y e. C ) } u. { <. x , y >. | ( x e. B /\ y e. C ) } ) |
| 12 | 4 11 | eqtr4i | |- ( ( A X. C ) u. ( B X. C ) ) = { <. x , y >. | ( x e. ( A u. B ) /\ y e. C ) } |
| 13 | 1 12 | eqtr4i | |- ( ( A u. B ) X. C ) = ( ( A X. C ) u. ( B X. C ) ) |