This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashunsng | |- ( B e. V -> ( ( A e. Fin /\ -. B e. A ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn | |- ( ( A i^i { B } ) = (/) <-> -. B e. A ) |
|
| 2 | snfi | |- { B } e. Fin |
|
| 3 | hashun | |- ( ( A e. Fin /\ { B } e. Fin /\ ( A i^i { B } ) = (/) ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) + ( # ` { B } ) ) ) |
|
| 4 | 2 3 | mp3an2 | |- ( ( A e. Fin /\ ( A i^i { B } ) = (/) ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) + ( # ` { B } ) ) ) |
| 5 | 1 4 | sylan2br | |- ( ( A e. Fin /\ -. B e. A ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) + ( # ` { B } ) ) ) |
| 6 | hashsng | |- ( B e. V -> ( # ` { B } ) = 1 ) |
|
| 7 | 6 | oveq2d | |- ( B e. V -> ( ( # ` A ) + ( # ` { B } ) ) = ( ( # ` A ) + 1 ) ) |
| 8 | 5 7 | sylan9eq | |- ( ( ( A e. Fin /\ -. B e. A ) /\ B e. V ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) + 1 ) ) |
| 9 | 8 | expcom | |- ( B e. V -> ( ( A e. Fin /\ -. B e. A ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) + 1 ) ) ) |