This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of findcard2 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard2s.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| findcard2s.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| findcard2s.3 | |- ( x = ( y u. { z } ) -> ( ph <-> th ) ) |
||
| findcard2s.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| findcard2s.5 | |- ps |
||
| findcard2s.6 | |- ( ( y e. Fin /\ -. z e. y ) -> ( ch -> th ) ) |
||
| Assertion | findcard2s | |- ( A e. Fin -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard2s.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| 2 | findcard2s.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | findcard2s.3 | |- ( x = ( y u. { z } ) -> ( ph <-> th ) ) |
|
| 4 | findcard2s.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | findcard2s.5 | |- ps |
|
| 6 | findcard2s.6 | |- ( ( y e. Fin /\ -. z e. y ) -> ( ch -> th ) ) |
|
| 7 | 6 | ex | |- ( y e. Fin -> ( -. z e. y -> ( ch -> th ) ) ) |
| 8 | snssi | |- ( z e. y -> { z } C_ y ) |
|
| 9 | ssequn1 | |- ( { z } C_ y <-> ( { z } u. y ) = y ) |
|
| 10 | 8 9 | sylib | |- ( z e. y -> ( { z } u. y ) = y ) |
| 11 | uncom | |- ( { z } u. y ) = ( y u. { z } ) |
|
| 12 | 10 11 | eqtr3di | |- ( z e. y -> y = ( y u. { z } ) ) |
| 13 | vex | |- y e. _V |
|
| 14 | 13 | eqvinc | |- ( y = ( y u. { z } ) <-> E. x ( x = y /\ x = ( y u. { z } ) ) ) |
| 15 | 12 14 | sylib | |- ( z e. y -> E. x ( x = y /\ x = ( y u. { z } ) ) ) |
| 16 | 2 | bicomd | |- ( x = y -> ( ch <-> ph ) ) |
| 17 | 16 3 | sylan9bb | |- ( ( x = y /\ x = ( y u. { z } ) ) -> ( ch <-> th ) ) |
| 18 | 17 | exlimiv | |- ( E. x ( x = y /\ x = ( y u. { z } ) ) -> ( ch <-> th ) ) |
| 19 | 15 18 | syl | |- ( z e. y -> ( ch <-> th ) ) |
| 20 | 19 | biimpd | |- ( z e. y -> ( ch -> th ) ) |
| 21 | 7 20 | pm2.61d2 | |- ( y e. Fin -> ( ch -> th ) ) |
| 22 | 1 2 3 4 5 21 | findcard2 | |- ( A e. Fin -> ta ) |