This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hashxp . (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashxplem.1 | ⊢ 𝐵 ∈ Fin | |
| Assertion | hashxplem | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashxplem.1 | ⊢ 𝐵 ∈ Fin | |
| 2 | xpeq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 × 𝐵 ) = ( ∅ × 𝐵 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ♯ ‘ ( ∅ × 𝐵 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ ∅ ) · ( ♯ ‘ 𝐵 ) ) ) |
| 6 | 3 5 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( ∅ × 𝐵 ) ) = ( ( ♯ ‘ ∅ ) · ( ♯ ‘ 𝐵 ) ) ) ) |
| 7 | xpeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 × 𝐵 ) = ( 𝑦 × 𝐵 ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ♯ ‘ ( 𝑦 × 𝐵 ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) |
| 11 | 8 10 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) ) |
| 12 | xpeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 × 𝐵 ) = ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) ) ) |
| 17 | xpeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 × 𝐵 ) = ( 𝐴 × 𝐵 ) ) | |
| 18 | 17 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ♯ ‘ ( 𝐴 × 𝐵 ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
| 21 | 18 20 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) ) |
| 22 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 23 | 22 | nn0cnd | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 24 | 23 | mul02d | ⊢ ( 𝐵 ∈ Fin → ( 0 · ( ♯ ‘ 𝐵 ) ) = 0 ) |
| 25 | 1 24 | ax-mp | ⊢ ( 0 · ( ♯ ‘ 𝐵 ) ) = 0 |
| 26 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 27 | 26 | oveq1i | ⊢ ( ( ♯ ‘ ∅ ) · ( ♯ ‘ 𝐵 ) ) = ( 0 · ( ♯ ‘ 𝐵 ) ) |
| 28 | 0xp | ⊢ ( ∅ × 𝐵 ) = ∅ | |
| 29 | 28 | fveq2i | ⊢ ( ♯ ‘ ( ∅ × 𝐵 ) ) = ( ♯ ‘ ∅ ) |
| 30 | 29 26 | eqtri | ⊢ ( ♯ ‘ ( ∅ × 𝐵 ) ) = 0 |
| 31 | 25 27 30 | 3eqtr4ri | ⊢ ( ♯ ‘ ( ∅ × 𝐵 ) ) = ( ( ♯ ‘ ∅ ) · ( ♯ ‘ 𝐵 ) ) |
| 32 | oveq1 | ⊢ ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 33 | 32 | adantl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) → ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 34 | xpundir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) = ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) | |
| 35 | 34 | fveq2i | ⊢ ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) |
| 36 | xpfi | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝑦 × 𝐵 ) ∈ Fin ) | |
| 37 | 1 36 | mpan2 | ⊢ ( 𝑦 ∈ Fin → ( 𝑦 × 𝐵 ) ∈ Fin ) |
| 38 | inxp | ⊢ ( ( 𝑦 × 𝐵 ) ∩ ( { 𝑧 } × 𝐵 ) ) = ( ( 𝑦 ∩ { 𝑧 } ) × ( 𝐵 ∩ 𝐵 ) ) | |
| 39 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 40 | 39 | biimpri | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 41 | 40 | xpeq1d | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ∩ { 𝑧 } ) × ( 𝐵 ∩ 𝐵 ) ) = ( ∅ × ( 𝐵 ∩ 𝐵 ) ) ) |
| 42 | 0xp | ⊢ ( ∅ × ( 𝐵 ∩ 𝐵 ) ) = ∅ | |
| 43 | 41 42 | eqtrdi | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ∩ { 𝑧 } ) × ( 𝐵 ∩ 𝐵 ) ) = ∅ ) |
| 44 | 38 43 | eqtrid | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 × 𝐵 ) ∩ ( { 𝑧 } × 𝐵 ) ) = ∅ ) |
| 45 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 46 | xpfi | ⊢ ( ( { 𝑧 } ∈ Fin ∧ 𝐵 ∈ Fin ) → ( { 𝑧 } × 𝐵 ) ∈ Fin ) | |
| 47 | 45 1 46 | mp2an | ⊢ ( { 𝑧 } × 𝐵 ) ∈ Fin |
| 48 | hashun | ⊢ ( ( ( 𝑦 × 𝐵 ) ∈ Fin ∧ ( { 𝑧 } × 𝐵 ) ∈ Fin ∧ ( ( 𝑦 × 𝐵 ) ∩ ( { 𝑧 } × 𝐵 ) ) = ∅ ) → ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) ) ) | |
| 49 | 47 48 | mp3an2 | ⊢ ( ( ( 𝑦 × 𝐵 ) ∈ Fin ∧ ( ( 𝑦 × 𝐵 ) ∩ ( { 𝑧 } × 𝐵 ) ) = ∅ ) → ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) ) ) |
| 50 | 37 44 49 | syl2an | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) ) ) |
| 51 | snex | ⊢ { 𝑧 } ∈ V | |
| 52 | 1 | elexi | ⊢ 𝐵 ∈ V |
| 53 | 51 52 | xpcomen | ⊢ ( { 𝑧 } × 𝐵 ) ≈ ( 𝐵 × { 𝑧 } ) |
| 54 | vex | ⊢ 𝑧 ∈ V | |
| 55 | 52 54 | xpsnen | ⊢ ( 𝐵 × { 𝑧 } ) ≈ 𝐵 |
| 56 | 53 55 | entri | ⊢ ( { 𝑧 } × 𝐵 ) ≈ 𝐵 |
| 57 | hashen | ⊢ ( ( ( { 𝑧 } × 𝐵 ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ↔ ( { 𝑧 } × 𝐵 ) ≈ 𝐵 ) ) | |
| 58 | 47 1 57 | mp2an | ⊢ ( ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ↔ ( { 𝑧 } × 𝐵 ) ≈ 𝐵 ) |
| 59 | 56 58 | mpbir | ⊢ ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) = ( ♯ ‘ 𝐵 ) |
| 60 | 59 | oveq2i | ⊢ ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) |
| 61 | 50 60 | eqtrdi | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 62 | 35 61 | eqtrid | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 64 | hashunsng | ⊢ ( 𝑧 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 65 | 54 64 | ax-mp | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 66 | 65 | oveq1d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) ) |
| 67 | hashcl | ⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) | |
| 68 | 67 | nn0cnd | ⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℂ ) |
| 69 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 70 | nn0cn | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) | |
| 71 | 1 22 70 | mp2b | ⊢ ( ♯ ‘ 𝐵 ) ∈ ℂ |
| 72 | adddir | ⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( 1 · ( ♯ ‘ 𝐵 ) ) ) ) | |
| 73 | 69 71 72 | mp3an23 | ⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( 1 · ( ♯ ‘ 𝐵 ) ) ) ) |
| 74 | 68 73 | syl | ⊢ ( 𝑦 ∈ Fin → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( 1 · ( ♯ ‘ 𝐵 ) ) ) ) |
| 75 | 71 | mullidi | ⊢ ( 1 · ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) |
| 76 | 75 | oveq2i | ⊢ ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( 1 · ( ♯ ‘ 𝐵 ) ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) |
| 77 | 74 76 | eqtrdi | ⊢ ( 𝑦 ∈ Fin → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 79 | 66 78 | eqtrd | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 81 | 33 63 80 | 3eqtr4d | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) ) |
| 82 | 81 | ex | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) ) ) |
| 83 | 6 11 16 21 31 82 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |