This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppco2.z | |- ( ph -> Z e. W ) |
|
| fsuppco2.f | |- ( ph -> F : A --> B ) |
||
| fsuppco2.g | |- ( ph -> G : B --> B ) |
||
| fsuppco2.a | |- ( ph -> A e. U ) |
||
| fsuppco2.b | |- ( ph -> B e. V ) |
||
| fsuppco2.n | |- ( ph -> F finSupp Z ) |
||
| fsuppco2.i | |- ( ph -> ( G ` Z ) = Z ) |
||
| Assertion | fsuppco2 | |- ( ph -> ( G o. F ) finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppco2.z | |- ( ph -> Z e. W ) |
|
| 2 | fsuppco2.f | |- ( ph -> F : A --> B ) |
|
| 3 | fsuppco2.g | |- ( ph -> G : B --> B ) |
|
| 4 | fsuppco2.a | |- ( ph -> A e. U ) |
|
| 5 | fsuppco2.b | |- ( ph -> B e. V ) |
|
| 6 | fsuppco2.n | |- ( ph -> F finSupp Z ) |
|
| 7 | fsuppco2.i | |- ( ph -> ( G ` Z ) = Z ) |
|
| 8 | 3 | ffund | |- ( ph -> Fun G ) |
| 9 | 2 | ffund | |- ( ph -> Fun F ) |
| 10 | funco | |- ( ( Fun G /\ Fun F ) -> Fun ( G o. F ) ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ph -> Fun ( G o. F ) ) |
| 12 | 6 | fsuppimpd | |- ( ph -> ( F supp Z ) e. Fin ) |
| 13 | fco | |- ( ( G : B --> B /\ F : A --> B ) -> ( G o. F ) : A --> B ) |
|
| 14 | 3 2 13 | syl2anc | |- ( ph -> ( G o. F ) : A --> B ) |
| 15 | eldifi | |- ( x e. ( A \ ( F supp Z ) ) -> x e. A ) |
|
| 16 | fvco3 | |- ( ( F : A --> B /\ x e. A ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
|
| 17 | 2 15 16 | syl2an | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 18 | ssidd | |- ( ph -> ( F supp Z ) C_ ( F supp Z ) ) |
|
| 19 | 2 18 4 1 | suppssr | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( F ` x ) = Z ) |
| 20 | 19 | fveq2d | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` ( F ` x ) ) = ( G ` Z ) ) |
| 21 | 7 | adantr | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` Z ) = Z ) |
| 22 | 17 20 21 | 3eqtrd | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = Z ) |
| 23 | 14 22 | suppss | |- ( ph -> ( ( G o. F ) supp Z ) C_ ( F supp Z ) ) |
| 24 | 12 23 | ssfid | |- ( ph -> ( ( G o. F ) supp Z ) e. Fin ) |
| 25 | 3 5 | fexd | |- ( ph -> G e. _V ) |
| 26 | 2 4 | fexd | |- ( ph -> F e. _V ) |
| 27 | coexg | |- ( ( G e. _V /\ F e. _V ) -> ( G o. F ) e. _V ) |
|
| 28 | 25 26 27 | syl2anc | |- ( ph -> ( G o. F ) e. _V ) |
| 29 | isfsupp | |- ( ( ( G o. F ) e. _V /\ Z e. W ) -> ( ( G o. F ) finSupp Z <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp Z ) e. Fin ) ) ) |
|
| 30 | 28 1 29 | syl2anc | |- ( ph -> ( ( G o. F ) finSupp Z <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp Z ) e. Fin ) ) ) |
| 31 | 11 24 30 | mpbir2and | |- ( ph -> ( G o. F ) finSupp Z ) |