This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invoppggim.o | |- O = ( oppG ` G ) |
|
| invoppggim.i | |- I = ( invg ` G ) |
||
| Assertion | invoppggim | |- ( G e. Grp -> I e. ( G GrpIso O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invoppggim.o | |- O = ( oppG ` G ) |
|
| 2 | invoppggim.i | |- I = ( invg ` G ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | 1 3 | oppgbas | |- ( Base ` G ) = ( Base ` O ) |
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 7 | id | |- ( G e. Grp -> G e. Grp ) |
|
| 8 | 1 | oppggrp | |- ( G e. Grp -> O e. Grp ) |
| 9 | 3 2 | grpinvf | |- ( G e. Grp -> I : ( Base ` G ) --> ( Base ` G ) ) |
| 10 | 3 5 2 | grpinvadd | |- ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) ) |
| 11 | 10 | 3expb | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) ) |
| 12 | 5 1 6 | oppgplus | |- ( ( I ` x ) ( +g ` O ) ( I ` y ) ) = ( ( I ` y ) ( +g ` G ) ( I ` x ) ) |
| 13 | 11 12 | eqtr4di | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` x ) ( +g ` O ) ( I ` y ) ) ) |
| 14 | 3 4 5 6 7 8 9 13 | isghmd | |- ( G e. Grp -> I e. ( G GrpHom O ) ) |
| 15 | 3 2 7 | grpinvf1o | |- ( G e. Grp -> I : ( Base ` G ) -1-1-onto-> ( Base ` G ) ) |
| 16 | 3 4 | isgim | |- ( I e. ( G GrpIso O ) <-> ( I e. ( G GrpHom O ) /\ I : ( Base ` G ) -1-1-onto-> ( Base ` G ) ) ) |
| 17 | 14 15 16 | sylanbrc | |- ( G e. Grp -> I e. ( G GrpIso O ) ) |