This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 4-May-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsuminv.b | |- B = ( Base ` G ) |
|
| gsuminv.z | |- .0. = ( 0g ` G ) |
||
| gsuminv.p | |- I = ( invg ` G ) |
||
| gsuminv.g | |- ( ph -> G e. Abel ) |
||
| gsuminv.a | |- ( ph -> A e. V ) |
||
| gsuminv.f | |- ( ph -> F : A --> B ) |
||
| gsuminv.n | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsuminv | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsuminv.b | |- B = ( Base ` G ) |
|
| 2 | gsuminv.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsuminv.p | |- I = ( invg ` G ) |
|
| 4 | gsuminv.g | |- ( ph -> G e. Abel ) |
|
| 5 | gsuminv.a | |- ( ph -> A e. V ) |
|
| 6 | gsuminv.f | |- ( ph -> F : A --> B ) |
|
| 7 | gsuminv.n | |- ( ph -> F finSupp .0. ) |
|
| 8 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
| 9 | 4 8 | syl | |- ( ph -> G e. CMnd ) |
| 10 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 11 | 9 10 | syl | |- ( ph -> G e. Mnd ) |
| 12 | 1 3 | invghm | |- ( G e. Abel <-> I e. ( G GrpHom G ) ) |
| 13 | 4 12 | sylib | |- ( ph -> I e. ( G GrpHom G ) ) |
| 14 | ghmmhm | |- ( I e. ( G GrpHom G ) -> I e. ( G MndHom G ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> I e. ( G MndHom G ) ) |
| 16 | 1 2 9 11 5 15 6 7 | gsummhm | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |