This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzcl.b | |- B = ( Base ` G ) |
|
| gsumzcl.0 | |- .0. = ( 0g ` G ) |
||
| gsumzcl.z | |- Z = ( Cntz ` G ) |
||
| gsumzcl.g | |- ( ph -> G e. Mnd ) |
||
| gsumzcl.a | |- ( ph -> A e. V ) |
||
| gsumzcl.f | |- ( ph -> F : A --> B ) |
||
| gsumzcl.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzcl.w | |- ( ph -> F finSupp .0. ) |
||
| gsumzf1o.h | |- ( ph -> H : C -1-1-onto-> A ) |
||
| Assertion | gsumzf1o | |- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzcl.b | |- B = ( Base ` G ) |
|
| 2 | gsumzcl.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumzcl.z | |- Z = ( Cntz ` G ) |
|
| 4 | gsumzcl.g | |- ( ph -> G e. Mnd ) |
|
| 5 | gsumzcl.a | |- ( ph -> A e. V ) |
|
| 6 | gsumzcl.f | |- ( ph -> F : A --> B ) |
|
| 7 | gsumzcl.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 8 | gsumzcl.w | |- ( ph -> F finSupp .0. ) |
|
| 9 | gsumzf1o.h | |- ( ph -> H : C -1-1-onto-> A ) |
|
| 10 | 2 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 11 | 4 5 10 | syl2anc | |- ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 12 | f1of1 | |- ( H : C -1-1-onto-> A -> H : C -1-1-> A ) |
|
| 13 | 9 12 | syl | |- ( ph -> H : C -1-1-> A ) |
| 14 | f1dmex | |- ( ( H : C -1-1-> A /\ A e. V ) -> C e. _V ) |
|
| 15 | 13 5 14 | syl2anc | |- ( ph -> C e. _V ) |
| 16 | 2 | gsumz | |- ( ( G e. Mnd /\ C e. _V ) -> ( G gsum ( x e. C |-> .0. ) ) = .0. ) |
| 17 | 4 15 16 | syl2anc | |- ( ph -> ( G gsum ( x e. C |-> .0. ) ) = .0. ) |
| 18 | 11 17 | eqtr4d | |- ( ph -> ( G gsum ( k e. A |-> .0. ) ) = ( G gsum ( x e. C |-> .0. ) ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( k e. A |-> .0. ) ) = ( G gsum ( x e. C |-> .0. ) ) ) |
| 20 | 2 | fvexi | |- .0. e. _V |
| 21 | 20 | a1i | |- ( ph -> .0. e. _V ) |
| 22 | ssidd | |- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
|
| 23 | 6 5 21 22 | gsumcllem | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> F = ( k e. A |-> .0. ) ) |
| 24 | 23 | oveq2d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 25 | f1of | |- ( H : C -1-1-onto-> A -> H : C --> A ) |
|
| 26 | 9 25 | syl | |- ( ph -> H : C --> A ) |
| 27 | 26 | adantr | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> H : C --> A ) |
| 28 | 27 | ffvelcdmda | |- ( ( ( ph /\ ( F supp .0. ) = (/) ) /\ x e. C ) -> ( H ` x ) e. A ) |
| 29 | 27 | feqmptd | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> H = ( x e. C |-> ( H ` x ) ) ) |
| 30 | eqidd | |- ( k = ( H ` x ) -> .0. = .0. ) |
|
| 31 | 28 29 23 30 | fmptco | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F o. H ) = ( x e. C |-> .0. ) ) |
| 32 | 31 | oveq2d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( F o. H ) ) = ( G gsum ( x e. C |-> .0. ) ) ) |
| 33 | 19 24 32 | 3eqtr4d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |
| 34 | 33 | ex | |- ( ph -> ( ( F supp .0. ) = (/) -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) ) |
| 35 | 9 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> H : C -1-1-onto-> A ) |
| 36 | f1ococnv2 | |- ( H : C -1-1-onto-> A -> ( H o. `' H ) = ( _I |` A ) ) |
|
| 37 | 35 36 | syl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( H o. `' H ) = ( _I |` A ) ) |
| 38 | 37 | coeq1d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( H o. `' H ) o. f ) = ( ( _I |` A ) o. f ) ) |
| 39 | f1of1 | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) ) |
|
| 40 | 39 | ad2antll | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) ) |
| 41 | suppssdm | |- ( F supp .0. ) C_ dom F |
|
| 42 | 41 6 | fssdm | |- ( ph -> ( F supp .0. ) C_ A ) |
| 43 | 42 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ A ) |
| 44 | f1ss | |- ( ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) /\ ( F supp .0. ) C_ A ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) |
|
| 45 | 40 43 44 | syl2anc | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) |
| 46 | f1f | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) --> A ) |
|
| 47 | fcoi2 | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) --> A -> ( ( _I |` A ) o. f ) = f ) |
|
| 48 | 45 46 47 | 3syl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( _I |` A ) o. f ) = f ) |
| 49 | 38 48 | eqtrd | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( H o. `' H ) o. f ) = f ) |
| 50 | coass | |- ( ( H o. `' H ) o. f ) = ( H o. ( `' H o. f ) ) |
|
| 51 | 49 50 | eqtr3di | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f = ( H o. ( `' H o. f ) ) ) |
| 52 | 51 | coeq2d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F o. f ) = ( F o. ( H o. ( `' H o. f ) ) ) ) |
| 53 | coass | |- ( ( F o. H ) o. ( `' H o. f ) ) = ( F o. ( H o. ( `' H o. f ) ) ) |
|
| 54 | 52 53 | eqtr4di | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F o. f ) = ( ( F o. H ) o. ( `' H o. f ) ) ) |
| 55 | 54 | seqeq3d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> seq 1 ( ( +g ` G ) , ( F o. f ) ) = seq 1 ( ( +g ` G ) , ( ( F o. H ) o. ( `' H o. f ) ) ) ) |
| 56 | 55 | fveq1d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( F supp .0. ) ) ) = ( seq 1 ( ( +g ` G ) , ( ( F o. H ) o. ( `' H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 57 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 58 | 4 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> G e. Mnd ) |
| 59 | 5 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> A e. V ) |
| 60 | 6 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> F : A --> B ) |
| 61 | 7 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 62 | simprl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( # ` ( F supp .0. ) ) e. NN ) |
|
| 63 | ssid | |- ( F supp .0. ) C_ ( F supp .0. ) |
|
| 64 | f1ofo | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -onto-> ( F supp .0. ) ) |
|
| 65 | forn | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -onto-> ( F supp .0. ) -> ran f = ( F supp .0. ) ) |
|
| 66 | 64 65 | syl | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ran f = ( F supp .0. ) ) |
| 67 | 66 | ad2antll | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran f = ( F supp .0. ) ) |
| 68 | 63 67 | sseqtrrid | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ ran f ) |
| 69 | eqid | |- ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) |
|
| 70 | 1 2 57 3 58 59 60 61 62 45 68 69 | gsumval3 | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 71 | 15 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> C e. _V ) |
| 72 | fco | |- ( ( F : A --> B /\ H : C --> A ) -> ( F o. H ) : C --> B ) |
|
| 73 | 6 26 72 | syl2anc | |- ( ph -> ( F o. H ) : C --> B ) |
| 74 | 73 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F o. H ) : C --> B ) |
| 75 | rncoss | |- ran ( F o. H ) C_ ran F |
|
| 76 | 3 | cntzidss | |- ( ( ran F C_ ( Z ` ran F ) /\ ran ( F o. H ) C_ ran F ) -> ran ( F o. H ) C_ ( Z ` ran ( F o. H ) ) ) |
| 77 | 7 75 76 | sylancl | |- ( ph -> ran ( F o. H ) C_ ( Z ` ran ( F o. H ) ) ) |
| 78 | 77 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran ( F o. H ) C_ ( Z ` ran ( F o. H ) ) ) |
| 79 | f1ocnv | |- ( H : C -1-1-onto-> A -> `' H : A -1-1-onto-> C ) |
|
| 80 | f1of1 | |- ( `' H : A -1-1-onto-> C -> `' H : A -1-1-> C ) |
|
| 81 | 9 79 80 | 3syl | |- ( ph -> `' H : A -1-1-> C ) |
| 82 | 81 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> `' H : A -1-1-> C ) |
| 83 | f1co | |- ( ( `' H : A -1-1-> C /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) -> ( `' H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> C ) |
|
| 84 | 82 45 83 | syl2anc | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( `' H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> C ) |
| 85 | ssidd | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ ( F supp .0. ) ) |
|
| 86 | 6 5 | fexd | |- ( ph -> F e. _V ) |
| 87 | suppimacnv | |- ( ( F e. _V /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
|
| 88 | 86 20 87 | sylancl | |- ( ph -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
| 89 | 88 | eqcomd | |- ( ph -> ( `' F " ( _V \ { .0. } ) ) = ( F supp .0. ) ) |
| 90 | 89 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( `' F " ( _V \ { .0. } ) ) = ( F supp .0. ) ) |
| 91 | 85 90 67 | 3sstr4d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ ran f ) |
| 92 | imass2 | |- ( ( `' F " ( _V \ { .0. } ) ) C_ ran f -> ( `' H " ( `' F " ( _V \ { .0. } ) ) ) C_ ( `' H " ran f ) ) |
|
| 93 | 91 92 | syl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( `' H " ( `' F " ( _V \ { .0. } ) ) ) C_ ( `' H " ran f ) ) |
| 94 | cnvco | |- `' ( F o. H ) = ( `' H o. `' F ) |
|
| 95 | 94 | imaeq1i | |- ( `' ( F o. H ) " ( _V \ { .0. } ) ) = ( ( `' H o. `' F ) " ( _V \ { .0. } ) ) |
| 96 | imaco | |- ( ( `' H o. `' F ) " ( _V \ { .0. } ) ) = ( `' H " ( `' F " ( _V \ { .0. } ) ) ) |
|
| 97 | 95 96 | eqtri | |- ( `' ( F o. H ) " ( _V \ { .0. } ) ) = ( `' H " ( `' F " ( _V \ { .0. } ) ) ) |
| 98 | rnco2 | |- ran ( `' H o. f ) = ( `' H " ran f ) |
|
| 99 | 93 97 98 | 3sstr4g | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( `' ( F o. H ) " ( _V \ { .0. } ) ) C_ ran ( `' H o. f ) ) |
| 100 | f1oexrnex | |- ( ( H : C -1-1-onto-> A /\ A e. V ) -> H e. _V ) |
|
| 101 | 9 5 100 | syl2anc | |- ( ph -> H e. _V ) |
| 102 | coexg | |- ( ( F e. _V /\ H e. _V ) -> ( F o. H ) e. _V ) |
|
| 103 | 86 101 102 | syl2anc | |- ( ph -> ( F o. H ) e. _V ) |
| 104 | suppimacnv | |- ( ( ( F o. H ) e. _V /\ .0. e. _V ) -> ( ( F o. H ) supp .0. ) = ( `' ( F o. H ) " ( _V \ { .0. } ) ) ) |
|
| 105 | 103 20 104 | sylancl | |- ( ph -> ( ( F o. H ) supp .0. ) = ( `' ( F o. H ) " ( _V \ { .0. } ) ) ) |
| 106 | 105 | sseq1d | |- ( ph -> ( ( ( F o. H ) supp .0. ) C_ ran ( `' H o. f ) <-> ( `' ( F o. H ) " ( _V \ { .0. } ) ) C_ ran ( `' H o. f ) ) ) |
| 107 | 106 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( ( F o. H ) supp .0. ) C_ ran ( `' H o. f ) <-> ( `' ( F o. H ) " ( _V \ { .0. } ) ) C_ ran ( `' H o. f ) ) ) |
| 108 | 99 107 | mpbird | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( F o. H ) supp .0. ) C_ ran ( `' H o. f ) ) |
| 109 | eqid | |- ( ( ( F o. H ) o. ( `' H o. f ) ) supp .0. ) = ( ( ( F o. H ) o. ( `' H o. f ) ) supp .0. ) |
|
| 110 | 1 2 57 3 58 71 74 78 62 84 108 109 | gsumval3 | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum ( F o. H ) ) = ( seq 1 ( ( +g ` G ) , ( ( F o. H ) o. ( `' H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 111 | 56 70 110 | 3eqtr4d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |
| 112 | 111 | expr | |- ( ( ph /\ ( # ` ( F supp .0. ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) ) |
| 113 | 112 | exlimdv | |- ( ( ph /\ ( # ` ( F supp .0. ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) ) |
| 114 | 113 | expimpd | |- ( ph -> ( ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) ) |
| 115 | fsuppimp | |- ( F finSupp .0. -> ( Fun F /\ ( F supp .0. ) e. Fin ) ) |
|
| 116 | 115 | simprd | |- ( F finSupp .0. -> ( F supp .0. ) e. Fin ) |
| 117 | fz1f1o | |- ( ( F supp .0. ) e. Fin -> ( ( F supp .0. ) = (/) \/ ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) ) |
|
| 118 | 8 116 117 | 3syl | |- ( ph -> ( ( F supp .0. ) = (/) \/ ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) ) |
| 119 | 34 114 118 | mpjaod | |- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |