This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep . (Contributed by NM, 4-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1dmex | |- ( ( F : A -1-1-> B /\ B e. C ) -> A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | 1 | frnd | |- ( F : A -1-1-> B -> ran F C_ B ) |
| 3 | ssexg | |- ( ( ran F C_ B /\ B e. C ) -> ran F e. _V ) |
|
| 4 | 2 3 | sylan | |- ( ( F : A -1-1-> B /\ B e. C ) -> ran F e. _V ) |
| 5 | 4 | ex | |- ( F : A -1-1-> B -> ( B e. C -> ran F e. _V ) ) |
| 6 | f1cnv | |- ( F : A -1-1-> B -> `' F : ran F -1-1-onto-> A ) |
|
| 7 | f1ofo | |- ( `' F : ran F -1-1-onto-> A -> `' F : ran F -onto-> A ) |
|
| 8 | 6 7 | syl | |- ( F : A -1-1-> B -> `' F : ran F -onto-> A ) |
| 9 | focdmex | |- ( ran F e. _V -> ( `' F : ran F -onto-> A -> A e. _V ) ) |
|
| 10 | 5 8 9 | syl6ci | |- ( F : A -1-1-> B -> ( B e. C -> A e. _V ) ) |
| 11 | 10 | imp | |- ( ( F : A -1-1-> B /\ B e. C ) -> A e. _V ) |