This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| gsumzf1o.h | ⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1-onto→ 𝐴 ) | ||
| Assertion | gsumzf1o | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | gsumzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 5 | gsumzcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumzcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsumzcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 8 | gsumzcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 9 | gsumzf1o.h | ⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1-onto→ 𝐴 ) | |
| 10 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 11 | 4 5 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 12 | f1of1 | ⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → 𝐻 : 𝐶 –1-1→ 𝐴 ) | |
| 13 | 9 12 | syl | ⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1→ 𝐴 ) |
| 14 | f1dmex | ⊢ ( ( 𝐻 : 𝐶 –1-1→ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐶 ∈ V ) | |
| 15 | 13 5 14 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 16 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐶 ∈ V ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐶 ↦ 0 ) ) = 0 ) |
| 17 | 4 15 16 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐶 ↦ 0 ) ) = 0 ) |
| 18 | 11 17 | eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐶 ↦ 0 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐶 ↦ 0 ) ) ) |
| 20 | 2 | fvexi | ⊢ 0 ∈ V |
| 21 | 20 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 22 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 23 | 6 5 21 22 | gsumcllem | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 25 | f1of | ⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → 𝐻 : 𝐶 ⟶ 𝐴 ) | |
| 26 | 9 25 | syl | ⊢ ( 𝜑 → 𝐻 : 𝐶 ⟶ 𝐴 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐻 : 𝐶 ⟶ 𝐴 ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
| 29 | 27 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐻 = ( 𝑥 ∈ 𝐶 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
| 30 | eqidd | ⊢ ( 𝑘 = ( 𝐻 ‘ 𝑥 ) → 0 = 0 ) | |
| 31 | 28 29 23 30 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ∘ 𝐻 ) = ( 𝑥 ∈ 𝐶 ↦ 0 ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐶 ↦ 0 ) ) ) |
| 33 | 19 24 32 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) |
| 34 | 33 | ex | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) ) |
| 35 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐻 : 𝐶 –1-1-onto→ 𝐴 ) |
| 36 | f1ococnv2 | ⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → ( 𝐻 ∘ ◡ 𝐻 ) = ( I ↾ 𝐴 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐻 ∘ ◡ 𝐻 ) = ( I ↾ 𝐴 ) ) |
| 38 | 37 | coeq1d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐻 ∘ ◡ 𝐻 ) ∘ 𝑓 ) = ( ( I ↾ 𝐴 ) ∘ 𝑓 ) ) |
| 39 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ) | |
| 40 | 39 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ) |
| 41 | suppssdm | ⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 | |
| 42 | 41 6 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 44 | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ∧ ( 𝐹 supp 0 ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) | |
| 45 | 40 43 44 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) |
| 46 | f1f | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐴 ) | |
| 47 | fcoi2 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ) | |
| 48 | 45 46 47 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ) |
| 49 | 38 48 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐻 ∘ ◡ 𝐻 ) ∘ 𝑓 ) = 𝑓 ) |
| 50 | coass | ⊢ ( ( 𝐻 ∘ ◡ 𝐻 ) ∘ 𝑓 ) = ( 𝐻 ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) | |
| 51 | 49 50 | eqtr3di | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 = ( 𝐻 ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) ) |
| 52 | 51 | coeq2d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ ( 𝐻 ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) ) ) |
| 53 | coass | ⊢ ( ( 𝐹 ∘ 𝐻 ) ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) = ( 𝐹 ∘ ( 𝐻 ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) ) | |
| 54 | 52 53 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ∘ 𝑓 ) = ( ( 𝐹 ∘ 𝐻 ) ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) ) |
| 55 | 54 | seqeq3d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ∘ 𝐻 ) ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) ) ) |
| 56 | 55 | fveq1d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ∘ 𝐻 ) ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 57 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 58 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐺 ∈ Mnd ) |
| 59 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 60 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 61 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 62 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) | |
| 63 | ssid | ⊢ ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) | |
| 64 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) ) | |
| 65 | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) ) | |
| 66 | 64 65 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 67 | 66 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 68 | 63 67 | sseqtrrid | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 69 | eqid | ⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) | |
| 70 | 1 2 57 3 58 59 60 61 62 45 68 69 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 71 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐶 ∈ V ) |
| 72 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐻 : 𝐶 ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐻 ) : 𝐶 ⟶ 𝐵 ) | |
| 73 | 6 26 72 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) : 𝐶 ⟶ 𝐵 ) |
| 74 | 73 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ∘ 𝐻 ) : 𝐶 ⟶ 𝐵 ) |
| 75 | rncoss | ⊢ ran ( 𝐹 ∘ 𝐻 ) ⊆ ran 𝐹 | |
| 76 | 3 | cntzidss | ⊢ ( ( ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ∧ ran ( 𝐹 ∘ 𝐻 ) ⊆ ran 𝐹 ) → ran ( 𝐹 ∘ 𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ∘ 𝐻 ) ) ) |
| 77 | 7 75 76 | sylancl | ⊢ ( 𝜑 → ran ( 𝐹 ∘ 𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ∘ 𝐻 ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran ( 𝐹 ∘ 𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ∘ 𝐻 ) ) ) |
| 79 | f1ocnv | ⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐻 : 𝐴 –1-1-onto→ 𝐶 ) | |
| 80 | f1of1 | ⊢ ( ◡ 𝐻 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐻 : 𝐴 –1-1→ 𝐶 ) | |
| 81 | 9 79 80 | 3syl | ⊢ ( 𝜑 → ◡ 𝐻 : 𝐴 –1-1→ 𝐶 ) |
| 82 | 81 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ◡ 𝐻 : 𝐴 –1-1→ 𝐶 ) |
| 83 | f1co | ⊢ ( ( ◡ 𝐻 : 𝐴 –1-1→ 𝐶 ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) → ( ◡ 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐶 ) | |
| 84 | 82 45 83 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐶 ) |
| 85 | ssidd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 86 | 6 5 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 87 | suppimacnv | ⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 88 | 86 20 87 | sylancl | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 89 | 88 | eqcomd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ( 𝐹 supp 0 ) ) |
| 90 | 89 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ( 𝐹 supp 0 ) ) |
| 91 | 85 90 67 | 3sstr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ran 𝑓 ) |
| 92 | imass2 | ⊢ ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ran 𝑓 → ( ◡ 𝐻 “ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ⊆ ( ◡ 𝐻 “ ran 𝑓 ) ) | |
| 93 | 91 92 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐻 “ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ⊆ ( ◡ 𝐻 “ ran 𝑓 ) ) |
| 94 | cnvco | ⊢ ◡ ( 𝐹 ∘ 𝐻 ) = ( ◡ 𝐻 ∘ ◡ 𝐹 ) | |
| 95 | 94 | imaeq1i | ⊢ ( ◡ ( 𝐹 ∘ 𝐻 ) “ ( V ∖ { 0 } ) ) = ( ( ◡ 𝐻 ∘ ◡ 𝐹 ) “ ( V ∖ { 0 } ) ) |
| 96 | imaco | ⊢ ( ( ◡ 𝐻 ∘ ◡ 𝐹 ) “ ( V ∖ { 0 } ) ) = ( ◡ 𝐻 “ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 97 | 95 96 | eqtri | ⊢ ( ◡ ( 𝐹 ∘ 𝐻 ) “ ( V ∖ { 0 } ) ) = ( ◡ 𝐻 “ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 98 | rnco2 | ⊢ ran ( ◡ 𝐻 ∘ 𝑓 ) = ( ◡ 𝐻 “ ran 𝑓 ) | |
| 99 | 93 97 98 | 3sstr4g | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ◡ ( 𝐹 ∘ 𝐻 ) “ ( V ∖ { 0 } ) ) ⊆ ran ( ◡ 𝐻 ∘ 𝑓 ) ) |
| 100 | f1oexrnex | ⊢ ( ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐻 ∈ V ) | |
| 101 | 9 5 100 | syl2anc | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 102 | coexg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐹 ∘ 𝐻 ) ∈ V ) | |
| 103 | 86 101 102 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) ∈ V ) |
| 104 | suppimacnv | ⊢ ( ( ( 𝐹 ∘ 𝐻 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) = ( ◡ ( 𝐹 ∘ 𝐻 ) “ ( V ∖ { 0 } ) ) ) | |
| 105 | 103 20 104 | sylancl | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) = ( ◡ ( 𝐹 ∘ 𝐻 ) “ ( V ∖ { 0 } ) ) ) |
| 106 | 105 | sseq1d | ⊢ ( 𝜑 → ( ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ ran ( ◡ 𝐻 ∘ 𝑓 ) ↔ ( ◡ ( 𝐹 ∘ 𝐻 ) “ ( V ∖ { 0 } ) ) ⊆ ran ( ◡ 𝐻 ∘ 𝑓 ) ) ) |
| 107 | 106 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ ran ( ◡ 𝐻 ∘ 𝑓 ) ↔ ( ◡ ( 𝐹 ∘ 𝐻 ) “ ( V ∖ { 0 } ) ) ⊆ ran ( ◡ 𝐻 ∘ 𝑓 ) ) ) |
| 108 | 99 107 | mpbird | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ ran ( ◡ 𝐻 ∘ 𝑓 ) ) |
| 109 | eqid | ⊢ ( ( ( 𝐹 ∘ 𝐻 ) ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) supp 0 ) = ( ( ( 𝐹 ∘ 𝐻 ) ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) supp 0 ) | |
| 110 | 1 2 57 3 58 71 74 78 62 84 108 109 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ∘ 𝐻 ) ∘ ( ◡ 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 111 | 56 70 110 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) |
| 112 | 111 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) ) |
| 113 | 112 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) ) |
| 114 | 113 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) ) |
| 115 | fsuppimp | ⊢ ( 𝐹 finSupp 0 → ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) | |
| 116 | 115 | simprd | ⊢ ( 𝐹 finSupp 0 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 117 | fz1f1o | ⊢ ( ( 𝐹 supp 0 ) ∈ Fin → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ) | |
| 118 | 8 116 117 | 3syl | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ) |
| 119 | 34 114 118 | mpjaod | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) |