This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oexrnex | |- ( ( F : A -1-1-onto-> B /\ B e. V ) -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F : A -1-1-onto-> B /\ B e. V ) -> F : A -1-1-onto-> B ) |
|
| 2 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 3 | f1of | |- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
|
| 4 | 1 2 3 | 3syl | |- ( ( F : A -1-1-onto-> B /\ B e. V ) -> `' F : B --> A ) |
| 5 | fex | |- ( ( `' F : B --> A /\ B e. V ) -> `' F e. _V ) |
|
| 6 | 4 5 | sylancom | |- ( ( F : A -1-1-onto-> B /\ B e. V ) -> `' F e. _V ) |
| 7 | f1orel | |- ( F : A -1-1-onto-> B -> Rel F ) |
|
| 8 | 7 | adantr | |- ( ( F : A -1-1-onto-> B /\ B e. V ) -> Rel F ) |
| 9 | relcnvexb | |- ( Rel F -> ( F e. _V <-> `' F e. _V ) ) |
|
| 10 | 8 9 | syl | |- ( ( F : A -1-1-onto-> B /\ B e. V ) -> ( F e. _V <-> `' F e. _V ) ) |
| 11 | 6 10 | mpbird | |- ( ( F : A -1-1-onto-> B /\ B e. V ) -> F e. _V ) |