This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of TakeutiZaring p. 25. (Contributed by NM, 28-May-1998) (Proof shortened by AV, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1co | |- ( ( F : B -1-1-> C /\ G : A -1-1-> B ) -> ( F o. G ) : A -1-1-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1cof1 | |- ( ( F : B -1-1-> C /\ G : A -1-1-> B ) -> ( F o. G ) : ( `' G " B ) -1-1-> C ) |
|
| 2 | f1f | |- ( G : A -1-1-> B -> G : A --> B ) |
|
| 3 | fimacnv | |- ( G : A --> B -> ( `' G " B ) = A ) |
|
| 4 | 2 3 | syl | |- ( G : A -1-1-> B -> ( `' G " B ) = A ) |
| 5 | 4 | adantl | |- ( ( F : B -1-1-> C /\ G : A -1-1-> B ) -> ( `' G " B ) = A ) |
| 6 | 5 | eqcomd | |- ( ( F : B -1-1-> C /\ G : A -1-1-> B ) -> A = ( `' G " B ) ) |
| 7 | f1eq2 | |- ( A = ( `' G " B ) -> ( ( F o. G ) : A -1-1-> C <-> ( F o. G ) : ( `' G " B ) -1-1-> C ) ) |
|
| 8 | 6 7 | syl | |- ( ( F : B -1-1-> C /\ G : A -1-1-> B ) -> ( ( F o. G ) : A -1-1-> C <-> ( F o. G ) : ( `' G " B ) -1-1-> C ) ) |
| 9 | 1 8 | mpbird | |- ( ( F : B -1-1-> C /\ G : A -1-1-> B ) -> ( F o. G ) : A -1-1-> C ) |