This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fo2nd | |- 2nd : _V -onto-> _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex | |- { x } e. _V |
|
| 2 | 1 | rnex | |- ran { x } e. _V |
| 3 | 2 | uniex | |- U. ran { x } e. _V |
| 4 | df-2nd | |- 2nd = ( x e. _V |-> U. ran { x } ) |
|
| 5 | 3 4 | fnmpti | |- 2nd Fn _V |
| 6 | 4 | rnmpt | |- ran 2nd = { y | E. x e. _V y = U. ran { x } } |
| 7 | vex | |- y e. _V |
|
| 8 | opex | |- <. y , y >. e. _V |
|
| 9 | 7 7 | op2nda | |- U. ran { <. y , y >. } = y |
| 10 | 9 | eqcomi | |- y = U. ran { <. y , y >. } |
| 11 | sneq | |- ( x = <. y , y >. -> { x } = { <. y , y >. } ) |
|
| 12 | 11 | rneqd | |- ( x = <. y , y >. -> ran { x } = ran { <. y , y >. } ) |
| 13 | 12 | unieqd | |- ( x = <. y , y >. -> U. ran { x } = U. ran { <. y , y >. } ) |
| 14 | 13 | rspceeqv | |- ( ( <. y , y >. e. _V /\ y = U. ran { <. y , y >. } ) -> E. x e. _V y = U. ran { x } ) |
| 15 | 8 10 14 | mp2an | |- E. x e. _V y = U. ran { x } |
| 16 | 7 15 | 2th | |- ( y e. _V <-> E. x e. _V y = U. ran { x } ) |
| 17 | 16 | eqabi | |- _V = { y | E. x e. _V y = U. ran { x } } |
| 18 | 6 17 | eqtr4i | |- ran 2nd = _V |
| 19 | df-fo | |- ( 2nd : _V -onto-> _V <-> ( 2nd Fn _V /\ ran 2nd = _V ) ) |
|
| 20 | 5 18 19 | mpbir2an | |- 2nd : _V -onto-> _V |