This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfsupp | |- ( ( R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq | |- ( r = R -> ( Fun r <-> Fun R ) ) |
|
| 2 | 1 | adantr | |- ( ( r = R /\ z = Z ) -> ( Fun r <-> Fun R ) ) |
| 3 | oveq12 | |- ( ( r = R /\ z = Z ) -> ( r supp z ) = ( R supp Z ) ) |
|
| 4 | 3 | eleq1d | |- ( ( r = R /\ z = Z ) -> ( ( r supp z ) e. Fin <-> ( R supp Z ) e. Fin ) ) |
| 5 | 2 4 | anbi12d | |- ( ( r = R /\ z = Z ) -> ( ( Fun r /\ ( r supp z ) e. Fin ) <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
| 6 | df-fsupp | |- finSupp = { <. r , z >. | ( Fun r /\ ( r supp z ) e. Fin ) } |
|
| 7 | 5 6 | brabga | |- ( ( R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |