This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for gsum2d . (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d.b | |- B = ( Base ` G ) |
|
| gsum2d.z | |- .0. = ( 0g ` G ) |
||
| gsum2d.g | |- ( ph -> G e. CMnd ) |
||
| gsum2d.a | |- ( ph -> A e. V ) |
||
| gsum2d.r | |- ( ph -> Rel A ) |
||
| gsum2d.d | |- ( ph -> D e. W ) |
||
| gsum2d.s | |- ( ph -> dom A C_ D ) |
||
| gsum2d.f | |- ( ph -> F : A --> B ) |
||
| gsum2d.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsum2dlem1 | |- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d.b | |- B = ( Base ` G ) |
|
| 2 | gsum2d.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsum2d.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsum2d.a | |- ( ph -> A e. V ) |
|
| 5 | gsum2d.r | |- ( ph -> Rel A ) |
|
| 6 | gsum2d.d | |- ( ph -> D e. W ) |
|
| 7 | gsum2d.s | |- ( ph -> dom A C_ D ) |
|
| 8 | gsum2d.f | |- ( ph -> F : A --> B ) |
|
| 9 | gsum2d.w | |- ( ph -> F finSupp .0. ) |
|
| 10 | imaexg | |- ( A e. V -> ( A " { j } ) e. _V ) |
|
| 11 | 4 10 | syl | |- ( ph -> ( A " { j } ) e. _V ) |
| 12 | vex | |- j e. _V |
|
| 13 | vex | |- k e. _V |
|
| 14 | 12 13 | elimasn | |- ( k e. ( A " { j } ) <-> <. j , k >. e. A ) |
| 15 | df-ov | |- ( j F k ) = ( F ` <. j , k >. ) |
|
| 16 | 8 | ffvelcdmda | |- ( ( ph /\ <. j , k >. e. A ) -> ( F ` <. j , k >. ) e. B ) |
| 17 | 15 16 | eqeltrid | |- ( ( ph /\ <. j , k >. e. A ) -> ( j F k ) e. B ) |
| 18 | 14 17 | sylan2b | |- ( ( ph /\ k e. ( A " { j } ) ) -> ( j F k ) e. B ) |
| 19 | 18 | fmpttd | |- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) : ( A " { j } ) --> B ) |
| 20 | 9 | fsuppimpd | |- ( ph -> ( F supp .0. ) e. Fin ) |
| 21 | rnfi | |- ( ( F supp .0. ) e. Fin -> ran ( F supp .0. ) e. Fin ) |
|
| 22 | 20 21 | syl | |- ( ph -> ran ( F supp .0. ) e. Fin ) |
| 23 | 14 | biimpi | |- ( k e. ( A " { j } ) -> <. j , k >. e. A ) |
| 24 | 12 13 | opelrn | |- ( <. j , k >. e. ( F supp .0. ) -> k e. ran ( F supp .0. ) ) |
| 25 | 24 | con3i | |- ( -. k e. ran ( F supp .0. ) -> -. <. j , k >. e. ( F supp .0. ) ) |
| 26 | 23 25 | anim12i | |- ( ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) -> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) |
| 27 | eldif | |- ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) <-> ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) ) |
|
| 28 | eldif | |- ( <. j , k >. e. ( A \ ( F supp .0. ) ) <-> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) |
|
| 29 | 26 27 28 | 3imtr4i | |- ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) -> <. j , k >. e. ( A \ ( F supp .0. ) ) ) |
| 30 | ssidd | |- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
|
| 31 | 2 | fvexi | |- .0. e. _V |
| 32 | 31 | a1i | |- ( ph -> .0. e. _V ) |
| 33 | 8 30 4 32 | suppssr | |- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) |
| 34 | 15 33 | eqtrid | |- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
| 35 | 29 34 | sylan2 | |- ( ( ph /\ k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
| 36 | 35 11 | suppss2 | |- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) C_ ran ( F supp .0. ) ) |
| 37 | 22 36 | ssfid | |- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) |
| 38 | 1 2 3 11 19 37 | gsumcl2 | |- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |