This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressuppss | |- ( ( F e. V /\ Z e. W ) -> ( ( F |` B ) supp Z ) C_ ( F supp Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | |- ( b e. ( B i^i dom F ) -> b e. dom F ) |
|
| 2 | dmres | |- dom ( F |` B ) = ( B i^i dom F ) |
|
| 3 | 1 2 | eleq2s | |- ( b e. dom ( F |` B ) -> b e. dom F ) |
| 4 | 3 | ad2antrl | |- ( ( ( F e. V /\ Z e. W ) /\ ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) ) -> b e. dom F ) |
| 5 | snssi | |- ( b e. B -> { b } C_ B ) |
|
| 6 | resima2 | |- ( { b } C_ B -> ( ( F |` B ) " { b } ) = ( F " { b } ) ) |
|
| 7 | 5 6 | syl | |- ( b e. B -> ( ( F |` B ) " { b } ) = ( F " { b } ) ) |
| 8 | 7 | neeq1d | |- ( b e. B -> ( ( ( F |` B ) " { b } ) =/= { Z } <-> ( F " { b } ) =/= { Z } ) ) |
| 9 | 8 | biimpd | |- ( b e. B -> ( ( ( F |` B ) " { b } ) =/= { Z } -> ( F " { b } ) =/= { Z } ) ) |
| 10 | 9 | adantld | |- ( b e. B -> ( ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) -> ( F " { b } ) =/= { Z } ) ) |
| 11 | 10 | adantld | |- ( b e. B -> ( ( ( F e. V /\ Z e. W ) /\ ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) ) -> ( F " { b } ) =/= { Z } ) ) |
| 12 | elin | |- ( b e. ( B i^i dom F ) <-> ( b e. B /\ b e. dom F ) ) |
|
| 13 | pm2.24 | |- ( b e. B -> ( -. b e. B -> ( F " { b } ) =/= { Z } ) ) |
|
| 14 | 13 | adantr | |- ( ( b e. B /\ b e. dom F ) -> ( -. b e. B -> ( F " { b } ) =/= { Z } ) ) |
| 15 | 12 14 | sylbi | |- ( b e. ( B i^i dom F ) -> ( -. b e. B -> ( F " { b } ) =/= { Z } ) ) |
| 16 | 15 2 | eleq2s | |- ( b e. dom ( F |` B ) -> ( -. b e. B -> ( F " { b } ) =/= { Z } ) ) |
| 17 | 16 | ad2antrl | |- ( ( ( F e. V /\ Z e. W ) /\ ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) ) -> ( -. b e. B -> ( F " { b } ) =/= { Z } ) ) |
| 18 | 17 | com12 | |- ( -. b e. B -> ( ( ( F e. V /\ Z e. W ) /\ ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) ) -> ( F " { b } ) =/= { Z } ) ) |
| 19 | 11 18 | pm2.61i | |- ( ( ( F e. V /\ Z e. W ) /\ ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) ) -> ( F " { b } ) =/= { Z } ) |
| 20 | 4 19 | jca | |- ( ( ( F e. V /\ Z e. W ) /\ ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) ) -> ( b e. dom F /\ ( F " { b } ) =/= { Z } ) ) |
| 21 | 20 | ex | |- ( ( F e. V /\ Z e. W ) -> ( ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) -> ( b e. dom F /\ ( F " { b } ) =/= { Z } ) ) ) |
| 22 | 21 | ss2abdv | |- ( ( F e. V /\ Z e. W ) -> { b | ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) } C_ { b | ( b e. dom F /\ ( F " { b } ) =/= { Z } ) } ) |
| 23 | df-rab | |- { b e. dom ( F |` B ) | ( ( F |` B ) " { b } ) =/= { Z } } = { b | ( b e. dom ( F |` B ) /\ ( ( F |` B ) " { b } ) =/= { Z } ) } |
|
| 24 | df-rab | |- { b e. dom F | ( F " { b } ) =/= { Z } } = { b | ( b e. dom F /\ ( F " { b } ) =/= { Z } ) } |
|
| 25 | 22 23 24 | 3sstr4g | |- ( ( F e. V /\ Z e. W ) -> { b e. dom ( F |` B ) | ( ( F |` B ) " { b } ) =/= { Z } } C_ { b e. dom F | ( F " { b } ) =/= { Z } } ) |
| 26 | resexg | |- ( F e. V -> ( F |` B ) e. _V ) |
|
| 27 | suppval | |- ( ( ( F |` B ) e. _V /\ Z e. W ) -> ( ( F |` B ) supp Z ) = { b e. dom ( F |` B ) | ( ( F |` B ) " { b } ) =/= { Z } } ) |
|
| 28 | 26 27 | sylan | |- ( ( F e. V /\ Z e. W ) -> ( ( F |` B ) supp Z ) = { b e. dom ( F |` B ) | ( ( F |` B ) " { b } ) =/= { Z } } ) |
| 29 | suppval | |- ( ( F e. V /\ Z e. W ) -> ( F supp Z ) = { b e. dom F | ( F " { b } ) =/= { Z } } ) |
|
| 30 | 25 28 29 | 3sstr4d | |- ( ( F e. V /\ Z e. W ) -> ( ( F |` B ) supp Z ) C_ ( F supp Z ) ) |