This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d.b | |- B = ( Base ` G ) |
|
| gsum2d.z | |- .0. = ( 0g ` G ) |
||
| gsum2d.g | |- ( ph -> G e. CMnd ) |
||
| gsum2d.a | |- ( ph -> A e. V ) |
||
| gsum2d.r | |- ( ph -> Rel A ) |
||
| gsum2d.d | |- ( ph -> D e. W ) |
||
| gsum2d.s | |- ( ph -> dom A C_ D ) |
||
| gsum2d.f | |- ( ph -> F : A --> B ) |
||
| gsum2d.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsum2d | |- ( ph -> ( G gsum F ) = ( G gsum ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d.b | |- B = ( Base ` G ) |
|
| 2 | gsum2d.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsum2d.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsum2d.a | |- ( ph -> A e. V ) |
|
| 5 | gsum2d.r | |- ( ph -> Rel A ) |
|
| 6 | gsum2d.d | |- ( ph -> D e. W ) |
|
| 7 | gsum2d.s | |- ( ph -> dom A C_ D ) |
|
| 8 | gsum2d.f | |- ( ph -> F : A --> B ) |
|
| 9 | gsum2d.w | |- ( ph -> F finSupp .0. ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | gsum2dlem2 | |- ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 11 | suppssdm | |- ( F supp .0. ) C_ dom F |
|
| 12 | 11 8 | fssdm | |- ( ph -> ( F supp .0. ) C_ A ) |
| 13 | relss | |- ( ( F supp .0. ) C_ A -> ( Rel A -> Rel ( F supp .0. ) ) ) |
|
| 14 | 12 5 13 | sylc | |- ( ph -> Rel ( F supp .0. ) ) |
| 15 | relssdmrn | |- ( Rel ( F supp .0. ) -> ( F supp .0. ) C_ ( dom ( F supp .0. ) X. ran ( F supp .0. ) ) ) |
|
| 16 | ssv | |- ran ( F supp .0. ) C_ _V |
|
| 17 | xpss2 | |- ( ran ( F supp .0. ) C_ _V -> ( dom ( F supp .0. ) X. ran ( F supp .0. ) ) C_ ( dom ( F supp .0. ) X. _V ) ) |
|
| 18 | 16 17 | ax-mp | |- ( dom ( F supp .0. ) X. ran ( F supp .0. ) ) C_ ( dom ( F supp .0. ) X. _V ) |
| 19 | 15 18 | sstrdi | |- ( Rel ( F supp .0. ) -> ( F supp .0. ) C_ ( dom ( F supp .0. ) X. _V ) ) |
| 20 | 14 19 | syl | |- ( ph -> ( F supp .0. ) C_ ( dom ( F supp .0. ) X. _V ) ) |
| 21 | 12 20 | ssind | |- ( ph -> ( F supp .0. ) C_ ( A i^i ( dom ( F supp .0. ) X. _V ) ) ) |
| 22 | df-res | |- ( A |` dom ( F supp .0. ) ) = ( A i^i ( dom ( F supp .0. ) X. _V ) ) |
|
| 23 | 21 22 | sseqtrrdi | |- ( ph -> ( F supp .0. ) C_ ( A |` dom ( F supp .0. ) ) ) |
| 24 | 1 2 3 4 8 23 9 | gsumres | |- ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum F ) ) |
| 25 | dmss | |- ( ( F supp .0. ) C_ A -> dom ( F supp .0. ) C_ dom A ) |
|
| 26 | 12 25 | syl | |- ( ph -> dom ( F supp .0. ) C_ dom A ) |
| 27 | 26 7 | sstrd | |- ( ph -> dom ( F supp .0. ) C_ D ) |
| 28 | 27 | resmptd | |- ( ph -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) |` dom ( F supp .0. ) ) = ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
| 29 | 28 | oveq2d | |- ( ph -> ( G gsum ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) |` dom ( F supp .0. ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 30 | 1 2 3 4 5 6 7 8 9 | gsum2dlem1 | |- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
| 31 | 30 | adantr | |- ( ( ph /\ j e. D ) -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
| 32 | 31 | fmpttd | |- ( ph -> ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) : D --> B ) |
| 33 | vex | |- j e. _V |
|
| 34 | vex | |- k e. _V |
|
| 35 | 33 34 | elimasn | |- ( k e. ( A " { j } ) <-> <. j , k >. e. A ) |
| 36 | 35 | biimpi | |- ( k e. ( A " { j } ) -> <. j , k >. e. A ) |
| 37 | 36 | ad2antll | |- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> <. j , k >. e. A ) |
| 38 | eldifn | |- ( j e. ( D \ dom ( F supp .0. ) ) -> -. j e. dom ( F supp .0. ) ) |
|
| 39 | 38 | ad2antrl | |- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> -. j e. dom ( F supp .0. ) ) |
| 40 | 33 34 | opeldm | |- ( <. j , k >. e. ( F supp .0. ) -> j e. dom ( F supp .0. ) ) |
| 41 | 39 40 | nsyl | |- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> -. <. j , k >. e. ( F supp .0. ) ) |
| 42 | 37 41 | eldifd | |- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> <. j , k >. e. ( A \ ( F supp .0. ) ) ) |
| 43 | df-ov | |- ( j F k ) = ( F ` <. j , k >. ) |
|
| 44 | ssidd | |- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
|
| 45 | 2 | fvexi | |- .0. e. _V |
| 46 | 45 | a1i | |- ( ph -> .0. e. _V ) |
| 47 | 8 44 4 46 | suppssr | |- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) |
| 48 | 43 47 | eqtrid | |- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
| 49 | 42 48 | syldan | |- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> ( j F k ) = .0. ) |
| 50 | 49 | anassrs | |- ( ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) /\ k e. ( A " { j } ) ) -> ( j F k ) = .0. ) |
| 51 | 50 | mpteq2dva | |- ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) -> ( k e. ( A " { j } ) |-> ( j F k ) ) = ( k e. ( A " { j } ) |-> .0. ) ) |
| 52 | 51 | oveq2d | |- ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( k e. ( A " { j } ) |-> .0. ) ) ) |
| 53 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 54 | 3 53 | syl | |- ( ph -> G e. Mnd ) |
| 55 | imaexg | |- ( A e. V -> ( A " { j } ) e. _V ) |
|
| 56 | 4 55 | syl | |- ( ph -> ( A " { j } ) e. _V ) |
| 57 | 2 | gsumz | |- ( ( G e. Mnd /\ ( A " { j } ) e. _V ) -> ( G gsum ( k e. ( A " { j } ) |-> .0. ) ) = .0. ) |
| 58 | 54 56 57 | syl2anc | |- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> .0. ) ) = .0. ) |
| 59 | 58 | adantr | |- ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) -> ( G gsum ( k e. ( A " { j } ) |-> .0. ) ) = .0. ) |
| 60 | 52 59 | eqtrd | |- ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = .0. ) |
| 61 | 60 6 | suppss2 | |- ( ph -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) supp .0. ) C_ dom ( F supp .0. ) ) |
| 62 | funmpt | |- Fun ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) |
|
| 63 | 62 | a1i | |- ( ph -> Fun ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
| 64 | 9 | fsuppimpd | |- ( ph -> ( F supp .0. ) e. Fin ) |
| 65 | dmfi | |- ( ( F supp .0. ) e. Fin -> dom ( F supp .0. ) e. Fin ) |
|
| 66 | 64 65 | syl | |- ( ph -> dom ( F supp .0. ) e. Fin ) |
| 67 | 66 61 | ssfid | |- ( ph -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) supp .0. ) e. Fin ) |
| 68 | 6 | mptexd | |- ( ph -> ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) e. _V ) |
| 69 | isfsupp | |- ( ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) e. _V /\ .0. e. _V ) -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) finSupp .0. <-> ( Fun ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) /\ ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) supp .0. ) e. Fin ) ) ) |
|
| 70 | 68 46 69 | syl2anc | |- ( ph -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) finSupp .0. <-> ( Fun ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) /\ ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) supp .0. ) e. Fin ) ) ) |
| 71 | 63 67 70 | mpbir2and | |- ( ph -> ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) finSupp .0. ) |
| 72 | 1 2 3 6 32 61 71 | gsumres | |- ( ph -> ( G gsum ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) |` dom ( F supp .0. ) ) ) = ( G gsum ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 73 | 29 72 | eqtr3d | |- ( ph -> ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 74 | 10 24 73 | 3eqtr3d | |- ( ph -> ( G gsum F ) = ( G gsum ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |