This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: G (see om2uz0i ) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| Assertion | om2uzisoi | |- G Isom _E , < ( _om , ( ZZ>= ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | 1 2 | om2uzf1oi | |- G : _om -1-1-onto-> ( ZZ>= ` C ) |
| 4 | epel | |- ( y _E z <-> y e. z ) |
|
| 5 | 1 2 | om2uzlt2i | |- ( ( y e. _om /\ z e. _om ) -> ( y e. z <-> ( G ` y ) < ( G ` z ) ) ) |
| 6 | 4 5 | bitrid | |- ( ( y e. _om /\ z e. _om ) -> ( y _E z <-> ( G ` y ) < ( G ` z ) ) ) |
| 7 | 6 | rgen2 | |- A. y e. _om A. z e. _om ( y _E z <-> ( G ` y ) < ( G ` z ) ) |
| 8 | df-isom | |- ( G Isom _E , < ( _om , ( ZZ>= ` C ) ) <-> ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ A. y e. _om A. z e. _om ( y _E z <-> ( G ` y ) < ( G ` z ) ) ) ) |
|
| 9 | 3 7 8 | mpbir2an | |- G Isom _E , < ( _om , ( ZZ>= ` C ) ) |