This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzrdgxfr.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) |
|
| uzrdgxfr.2 | |- H = ( rec ( ( x e. _V |-> ( x + 1 ) ) , B ) |` _om ) |
||
| uzrdgxfr.3 | |- A e. ZZ |
||
| uzrdgxfr.4 | |- B e. ZZ |
||
| Assertion | uzrdgxfr | |- ( N e. _om -> ( G ` N ) = ( ( H ` N ) + ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzrdgxfr.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) |
|
| 2 | uzrdgxfr.2 | |- H = ( rec ( ( x e. _V |-> ( x + 1 ) ) , B ) |` _om ) |
|
| 3 | uzrdgxfr.3 | |- A e. ZZ |
|
| 4 | uzrdgxfr.4 | |- B e. ZZ |
|
| 5 | fveq2 | |- ( y = (/) -> ( G ` y ) = ( G ` (/) ) ) |
|
| 6 | fveq2 | |- ( y = (/) -> ( H ` y ) = ( H ` (/) ) ) |
|
| 7 | 6 | oveq1d | |- ( y = (/) -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` (/) ) + ( A - B ) ) ) |
| 8 | 5 7 | eqeq12d | |- ( y = (/) -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` (/) ) = ( ( H ` (/) ) + ( A - B ) ) ) ) |
| 9 | fveq2 | |- ( y = k -> ( G ` y ) = ( G ` k ) ) |
|
| 10 | fveq2 | |- ( y = k -> ( H ` y ) = ( H ` k ) ) |
|
| 11 | 10 | oveq1d | |- ( y = k -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` k ) + ( A - B ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( y = k -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` k ) = ( ( H ` k ) + ( A - B ) ) ) ) |
| 13 | fveq2 | |- ( y = suc k -> ( G ` y ) = ( G ` suc k ) ) |
|
| 14 | fveq2 | |- ( y = suc k -> ( H ` y ) = ( H ` suc k ) ) |
|
| 15 | 14 | oveq1d | |- ( y = suc k -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` suc k ) + ( A - B ) ) ) |
| 16 | 13 15 | eqeq12d | |- ( y = suc k -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) ) ) |
| 17 | fveq2 | |- ( y = N -> ( G ` y ) = ( G ` N ) ) |
|
| 18 | fveq2 | |- ( y = N -> ( H ` y ) = ( H ` N ) ) |
|
| 19 | 18 | oveq1d | |- ( y = N -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` N ) + ( A - B ) ) ) |
| 20 | 17 19 | eqeq12d | |- ( y = N -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` N ) = ( ( H ` N ) + ( A - B ) ) ) ) |
| 21 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 22 | 4 21 | ax-mp | |- B e. CC |
| 23 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 24 | 3 23 | ax-mp | |- A e. CC |
| 25 | 22 24 | pncan3i | |- ( B + ( A - B ) ) = A |
| 26 | 4 2 | om2uz0i | |- ( H ` (/) ) = B |
| 27 | 26 | oveq1i | |- ( ( H ` (/) ) + ( A - B ) ) = ( B + ( A - B ) ) |
| 28 | 3 1 | om2uz0i | |- ( G ` (/) ) = A |
| 29 | 25 27 28 | 3eqtr4ri | |- ( G ` (/) ) = ( ( H ` (/) ) + ( A - B ) ) |
| 30 | oveq1 | |- ( ( G ` k ) = ( ( H ` k ) + ( A - B ) ) -> ( ( G ` k ) + 1 ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
|
| 31 | 3 1 | om2uzsuci | |- ( k e. _om -> ( G ` suc k ) = ( ( G ` k ) + 1 ) ) |
| 32 | 4 2 | om2uzsuci | |- ( k e. _om -> ( H ` suc k ) = ( ( H ` k ) + 1 ) ) |
| 33 | 32 | oveq1d | |- ( k e. _om -> ( ( H ` suc k ) + ( A - B ) ) = ( ( ( H ` k ) + 1 ) + ( A - B ) ) ) |
| 34 | 4 2 | om2uzuzi | |- ( k e. _om -> ( H ` k ) e. ( ZZ>= ` B ) ) |
| 35 | eluzelz | |- ( ( H ` k ) e. ( ZZ>= ` B ) -> ( H ` k ) e. ZZ ) |
|
| 36 | 34 35 | syl | |- ( k e. _om -> ( H ` k ) e. ZZ ) |
| 37 | 36 | zcnd | |- ( k e. _om -> ( H ` k ) e. CC ) |
| 38 | ax-1cn | |- 1 e. CC |
|
| 39 | 24 22 | subcli | |- ( A - B ) e. CC |
| 40 | add32 | |- ( ( ( H ` k ) e. CC /\ 1 e. CC /\ ( A - B ) e. CC ) -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
|
| 41 | 38 39 40 | mp3an23 | |- ( ( H ` k ) e. CC -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
| 42 | 37 41 | syl | |- ( k e. _om -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
| 43 | 33 42 | eqtrd | |- ( k e. _om -> ( ( H ` suc k ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
| 44 | 31 43 | eqeq12d | |- ( k e. _om -> ( ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) <-> ( ( G ` k ) + 1 ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) ) |
| 45 | 30 44 | imbitrrid | |- ( k e. _om -> ( ( G ` k ) = ( ( H ` k ) + ( A - B ) ) -> ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) ) ) |
| 46 | 8 12 16 20 29 45 | finds | |- ( N e. _om -> ( G ` N ) = ( ( H ` N ) + ( A - B ) ) ) |