This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer ordering relation. (Contributed by NM, 10-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zleltp1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> M < ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 2 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 3 | 1re | |- 1 e. RR |
|
| 4 | leadd1 | |- ( ( M e. RR /\ N e. RR /\ 1 e. RR ) -> ( M <_ N <-> ( M + 1 ) <_ ( N + 1 ) ) ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> ( M + 1 ) <_ ( N + 1 ) ) ) |
| 6 | 1 2 5 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( M + 1 ) <_ ( N + 1 ) ) ) |
| 7 | peano2z | |- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
|
| 8 | zltp1le | |- ( ( M e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( M < ( N + 1 ) <-> ( M + 1 ) <_ ( N + 1 ) ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < ( N + 1 ) <-> ( M + 1 ) <_ ( N + 1 ) ) ) |
| 10 | 6 9 | bitr4d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> M < ( N + 1 ) ) ) |