This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for frgpnabl . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpnabl.g | |- G = ( freeGrp ` I ) |
|
| frgpnabl.w | |- W = ( _I ` Word ( I X. 2o ) ) |
||
| frgpnabl.r | |- .~ = ( ~FG ` I ) |
||
| frgpnabl.p | |- .+ = ( +g ` G ) |
||
| frgpnabl.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| frgpnabl.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| frgpnabl.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| frgpnabl.u | |- U = ( varFGrp ` I ) |
||
| frgpnabl.i | |- ( ph -> I e. V ) |
||
| frgpnabl.a | |- ( ph -> A e. I ) |
||
| frgpnabl.b | |- ( ph -> B e. I ) |
||
| Assertion | frgpnabllem1 | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( D i^i ( ( U ` A ) .+ ( U ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpnabl.g | |- G = ( freeGrp ` I ) |
|
| 2 | frgpnabl.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 3 | frgpnabl.r | |- .~ = ( ~FG ` I ) |
|
| 4 | frgpnabl.p | |- .+ = ( +g ` G ) |
|
| 5 | frgpnabl.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 6 | frgpnabl.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 7 | frgpnabl.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 8 | frgpnabl.u | |- U = ( varFGrp ` I ) |
|
| 9 | frgpnabl.i | |- ( ph -> I e. V ) |
|
| 10 | frgpnabl.a | |- ( ph -> A e. I ) |
|
| 11 | frgpnabl.b | |- ( ph -> B e. I ) |
|
| 12 | 0ex | |- (/) e. _V |
|
| 13 | 12 | prid1 | |- (/) e. { (/) , 1o } |
| 14 | df2o3 | |- 2o = { (/) , 1o } |
|
| 15 | 13 14 | eleqtrri | |- (/) e. 2o |
| 16 | opelxpi | |- ( ( A e. I /\ (/) e. 2o ) -> <. A , (/) >. e. ( I X. 2o ) ) |
|
| 17 | 10 15 16 | sylancl | |- ( ph -> <. A , (/) >. e. ( I X. 2o ) ) |
| 18 | opelxpi | |- ( ( B e. I /\ (/) e. 2o ) -> <. B , (/) >. e. ( I X. 2o ) ) |
|
| 19 | 11 15 18 | sylancl | |- ( ph -> <. B , (/) >. e. ( I X. 2o ) ) |
| 20 | 17 19 | s2cld | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. Word ( I X. 2o ) ) |
| 21 | 2on | |- 2o e. On |
|
| 22 | xpexg | |- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 23 | 9 21 22 | sylancl | |- ( ph -> ( I X. 2o ) e. _V ) |
| 24 | wrdexg | |- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
|
| 25 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 26 | 23 24 25 | 3syl | |- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 27 | 2 26 | eqtrid | |- ( ph -> W = Word ( I X. 2o ) ) |
| 28 | 20 27 | eleqtrrd | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. W ) |
| 29 | 1n0 | |- 1o =/= (/) |
|
| 30 | 2cn | |- 2 e. CC |
|
| 31 | 30 | addlidi | |- ( 0 + 2 ) = 2 |
| 32 | s2len | |- ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = 2 |
|
| 33 | 31 32 | eqtr4i | |- ( 0 + 2 ) = ( # ` <" <. A , (/) >. <. B , (/) >. "> ) |
| 34 | 2 3 5 6 | efgtlen | |- ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = ( ( # ` x ) + 2 ) ) |
| 35 | 34 | adantll | |- ( ( ( ph /\ x e. W ) /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = ( ( # ` x ) + 2 ) ) |
| 36 | 33 35 | eqtrid | |- ( ( ( ph /\ x e. W ) /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( 0 + 2 ) = ( ( # ` x ) + 2 ) ) |
| 37 | 36 | ex | |- ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> ( 0 + 2 ) = ( ( # ` x ) + 2 ) ) ) |
| 38 | 0cnd | |- ( ( ph /\ x e. W ) -> 0 e. CC ) |
|
| 39 | simpr | |- ( ( ph /\ x e. W ) -> x e. W ) |
|
| 40 | 2 | efgrcl | |- ( x e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 41 | 40 | simprd | |- ( x e. W -> W = Word ( I X. 2o ) ) |
| 42 | 41 | adantl | |- ( ( ph /\ x e. W ) -> W = Word ( I X. 2o ) ) |
| 43 | 39 42 | eleqtrd | |- ( ( ph /\ x e. W ) -> x e. Word ( I X. 2o ) ) |
| 44 | lencl | |- ( x e. Word ( I X. 2o ) -> ( # ` x ) e. NN0 ) |
|
| 45 | 43 44 | syl | |- ( ( ph /\ x e. W ) -> ( # ` x ) e. NN0 ) |
| 46 | 45 | nn0cnd | |- ( ( ph /\ x e. W ) -> ( # ` x ) e. CC ) |
| 47 | 2cnd | |- ( ( ph /\ x e. W ) -> 2 e. CC ) |
|
| 48 | 38 46 47 | addcan2d | |- ( ( ph /\ x e. W ) -> ( ( 0 + 2 ) = ( ( # ` x ) + 2 ) <-> 0 = ( # ` x ) ) ) |
| 49 | 37 48 | sylibd | |- ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> 0 = ( # ` x ) ) ) |
| 50 | 2 3 5 6 | efgtf | |- ( (/) e. W -> ( ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` (/) ) : ( ( 0 ... ( # ` (/) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 51 | 50 | adantl | |- ( ( ph /\ (/) e. W ) -> ( ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` (/) ) : ( ( 0 ... ( # ` (/) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 52 | 51 | simpld | |- ( ( ph /\ (/) e. W ) -> ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 53 | 52 | rneqd | |- ( ( ph /\ (/) e. W ) -> ran ( T ` (/) ) = ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 54 | 53 | eleq2d | |- ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) <-> <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) ) |
| 55 | eqid | |- ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) |
|
| 56 | ovex | |- ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) e. _V |
|
| 57 | 55 56 | elrnmpo | |- ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) <-> E. a e. ( 0 ... ( # ` (/) ) ) E. b e. ( I X. 2o ) <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) |
| 58 | wrd0 | |- (/) e. Word ( I X. 2o ) |
|
| 59 | 58 | a1i | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> (/) e. Word ( I X. 2o ) ) |
| 60 | simprr | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> b e. ( I X. 2o ) ) |
|
| 61 | 5 | efgmf | |- M : ( I X. 2o ) --> ( I X. 2o ) |
| 62 | 61 | ffvelcdmi | |- ( b e. ( I X. 2o ) -> ( M ` b ) e. ( I X. 2o ) ) |
| 63 | 60 62 | syl | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( M ` b ) e. ( I X. 2o ) ) |
| 64 | 60 63 | s2cld | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> <" b ( M ` b ) "> e. Word ( I X. 2o ) ) |
| 65 | ccatidid | |- ( (/) ++ (/) ) = (/) |
|
| 66 | 65 | oveq1i | |- ( ( (/) ++ (/) ) ++ (/) ) = ( (/) ++ (/) ) |
| 67 | 66 65 | eqtr2i | |- (/) = ( ( (/) ++ (/) ) ++ (/) ) |
| 68 | 67 | a1i | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> (/) = ( ( (/) ++ (/) ) ++ (/) ) ) |
| 69 | simprl | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. ( 0 ... ( # ` (/) ) ) ) |
|
| 70 | hash0 | |- ( # ` (/) ) = 0 |
|
| 71 | 70 | oveq2i | |- ( 0 ... ( # ` (/) ) ) = ( 0 ... 0 ) |
| 72 | 69 71 | eleqtrdi | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. ( 0 ... 0 ) ) |
| 73 | elfz1eq | |- ( a e. ( 0 ... 0 ) -> a = 0 ) |
|
| 74 | 72 73 | syl | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = 0 ) |
| 75 | 74 70 | eqtr4di | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = ( # ` (/) ) ) |
| 76 | 70 | oveq2i | |- ( a + ( # ` (/) ) ) = ( a + 0 ) |
| 77 | 0cn | |- 0 e. CC |
|
| 78 | 74 77 | eqeltrdi | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. CC ) |
| 79 | 78 | addridd | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( a + 0 ) = a ) |
| 80 | 76 79 | eqtr2id | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = ( a + ( # ` (/) ) ) ) |
| 81 | 59 59 59 64 68 75 80 | splval2 | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) = ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) ) |
| 82 | ccatlid | |- ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( (/) ++ <" b ( M ` b ) "> ) = <" b ( M ` b ) "> ) |
|
| 83 | 82 | oveq1d | |- ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = ( <" b ( M ` b ) "> ++ (/) ) ) |
| 84 | ccatrid | |- ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( <" b ( M ` b ) "> ++ (/) ) = <" b ( M ` b ) "> ) |
|
| 85 | 83 84 | eqtrd | |- ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = <" b ( M ` b ) "> ) |
| 86 | 64 85 | syl | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = <" b ( M ` b ) "> ) |
| 87 | 81 86 | eqtrd | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) = <" b ( M ` b ) "> ) |
| 88 | 87 | eqeq2d | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) <-> <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) ) |
| 89 | 10 | ad3antrrr | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> A e. I ) |
| 90 | 1on | |- 1o e. On |
|
| 91 | 90 | a1i | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> 1o e. On ) |
| 92 | simpr | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) |
|
| 93 | 92 | fveq1d | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = ( <" b ( M ` b ) "> ` 1 ) ) |
| 94 | opex | |- <. B , (/) >. e. _V |
|
| 95 | s2fv1 | |- ( <. B , (/) >. e. _V -> ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = <. B , (/) >. ) |
|
| 96 | 94 95 | ax-mp | |- ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = <. B , (/) >. |
| 97 | fvex | |- ( M ` b ) e. _V |
|
| 98 | s2fv1 | |- ( ( M ` b ) e. _V -> ( <" b ( M ` b ) "> ` 1 ) = ( M ` b ) ) |
|
| 99 | 97 98 | ax-mp | |- ( <" b ( M ` b ) "> ` 1 ) = ( M ` b ) |
| 100 | 93 96 99 | 3eqtr3g | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. B , (/) >. = ( M ` b ) ) |
| 101 | 92 | fveq1d | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = ( <" b ( M ` b ) "> ` 0 ) ) |
| 102 | opex | |- <. A , (/) >. e. _V |
|
| 103 | s2fv0 | |- ( <. A , (/) >. e. _V -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. ) |
|
| 104 | 102 103 | ax-mp | |- ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. |
| 105 | s2fv0 | |- ( b e. _V -> ( <" b ( M ` b ) "> ` 0 ) = b ) |
|
| 106 | 105 | elv | |- ( <" b ( M ` b ) "> ` 0 ) = b |
| 107 | 101 104 106 | 3eqtr3g | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. A , (/) >. = b ) |
| 108 | 107 | fveq2d | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( M ` <. A , (/) >. ) = ( M ` b ) ) |
| 109 | 5 | efgmval | |- ( ( A e. I /\ (/) e. 2o ) -> ( A M (/) ) = <. A , ( 1o \ (/) ) >. ) |
| 110 | 89 15 109 | sylancl | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( A M (/) ) = <. A , ( 1o \ (/) ) >. ) |
| 111 | df-ov | |- ( A M (/) ) = ( M ` <. A , (/) >. ) |
|
| 112 | dif0 | |- ( 1o \ (/) ) = 1o |
|
| 113 | 112 | opeq2i | |- <. A , ( 1o \ (/) ) >. = <. A , 1o >. |
| 114 | 110 111 113 | 3eqtr3g | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( M ` <. A , (/) >. ) = <. A , 1o >. ) |
| 115 | 100 108 114 | 3eqtr2rd | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. A , 1o >. = <. B , (/) >. ) |
| 116 | opthg | |- ( ( A e. I /\ 1o e. On ) -> ( <. A , 1o >. = <. B , (/) >. <-> ( A = B /\ 1o = (/) ) ) ) |
|
| 117 | 116 | simplbda | |- ( ( ( A e. I /\ 1o e. On ) /\ <. A , 1o >. = <. B , (/) >. ) -> 1o = (/) ) |
| 118 | 89 91 115 117 | syl21anc | |- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> 1o = (/) ) |
| 119 | 118 | ex | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> -> 1o = (/) ) ) |
| 120 | 88 119 | sylbid | |- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) -> 1o = (/) ) ) |
| 121 | 120 | rexlimdvva | |- ( ( ph /\ (/) e. W ) -> ( E. a e. ( 0 ... ( # ` (/) ) ) E. b e. ( I X. 2o ) <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) -> 1o = (/) ) ) |
| 122 | 57 121 | biimtrid | |- ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) -> 1o = (/) ) ) |
| 123 | 54 122 | sylbid | |- ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) -> 1o = (/) ) ) |
| 124 | 123 | expimpd | |- ( ph -> ( ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) -> 1o = (/) ) ) |
| 125 | hasheq0 | |- ( x e. _V -> ( ( # ` x ) = 0 <-> x = (/) ) ) |
|
| 126 | 125 | elv | |- ( ( # ` x ) = 0 <-> x = (/) ) |
| 127 | eleq1 | |- ( x = (/) -> ( x e. W <-> (/) e. W ) ) |
|
| 128 | fveq2 | |- ( x = (/) -> ( T ` x ) = ( T ` (/) ) ) |
|
| 129 | 128 | rneqd | |- ( x = (/) -> ran ( T ` x ) = ran ( T ` (/) ) ) |
| 130 | 129 | eleq2d | |- ( x = (/) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) <-> <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) |
| 131 | 127 130 | anbi12d | |- ( x = (/) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) |
| 132 | 126 131 | sylbi | |- ( ( # ` x ) = 0 -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) |
| 133 | 132 | eqcoms | |- ( 0 = ( # ` x ) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) |
| 134 | 133 | imbi1d | |- ( 0 = ( # ` x ) -> ( ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> 1o = (/) ) <-> ( ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) -> 1o = (/) ) ) ) |
| 135 | 124 134 | syl5ibrcom | |- ( ph -> ( 0 = ( # ` x ) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> 1o = (/) ) ) ) |
| 136 | 135 | com23 | |- ( ph -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( 0 = ( # ` x ) -> 1o = (/) ) ) ) |
| 137 | 136 | expdimp | |- ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> ( 0 = ( # ` x ) -> 1o = (/) ) ) ) |
| 138 | 49 137 | mpdd | |- ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> 1o = (/) ) ) |
| 139 | 138 | necon3ad | |- ( ( ph /\ x e. W ) -> ( 1o =/= (/) -> -. <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) ) |
| 140 | 29 139 | mpi | |- ( ( ph /\ x e. W ) -> -. <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) |
| 141 | 140 | nrexdv | |- ( ph -> -. E. x e. W <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) |
| 142 | eliun | |- ( <" <. A , (/) >. <. B , (/) >. "> e. U_ x e. W ran ( T ` x ) <-> E. x e. W <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) |
|
| 143 | 141 142 | sylnibr | |- ( ph -> -. <" <. A , (/) >. <. B , (/) >. "> e. U_ x e. W ran ( T ` x ) ) |
| 144 | 28 143 | eldifd | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( W \ U_ x e. W ran ( T ` x ) ) ) |
| 145 | 144 7 | eleqtrrdi | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. D ) |
| 146 | df-s2 | |- <" <. A , (/) >. <. B , (/) >. "> = ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) |
|
| 147 | 2 3 | efger | |- .~ Er W |
| 148 | 147 | a1i | |- ( ph -> .~ Er W ) |
| 149 | 148 28 | erref | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> .~ <" <. A , (/) >. <. B , (/) >. "> ) |
| 150 | 146 149 | eqbrtrrid | |- ( ph -> ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) .~ <" <. A , (/) >. <. B , (/) >. "> ) |
| 151 | 146 | ovexi | |- <" <. A , (/) >. <. B , (/) >. "> e. _V |
| 152 | ovex | |- ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) e. _V |
|
| 153 | 151 152 | elec | |- ( <" <. A , (/) >. <. B , (/) >. "> e. [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ <-> ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) .~ <" <. A , (/) >. <. B , (/) >. "> ) |
| 154 | 150 153 | sylibr | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) |
| 155 | 3 8 | vrgpval | |- ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
| 156 | 9 10 155 | syl2anc | |- ( ph -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
| 157 | 3 8 | vrgpval | |- ( ( I e. V /\ B e. I ) -> ( U ` B ) = [ <" <. B , (/) >. "> ] .~ ) |
| 158 | 9 11 157 | syl2anc | |- ( ph -> ( U ` B ) = [ <" <. B , (/) >. "> ] .~ ) |
| 159 | 156 158 | oveq12d | |- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) ) |
| 160 | 17 | s1cld | |- ( ph -> <" <. A , (/) >. "> e. Word ( I X. 2o ) ) |
| 161 | 160 27 | eleqtrrd | |- ( ph -> <" <. A , (/) >. "> e. W ) |
| 162 | 19 | s1cld | |- ( ph -> <" <. B , (/) >. "> e. Word ( I X. 2o ) ) |
| 163 | 162 27 | eleqtrrd | |- ( ph -> <" <. B , (/) >. "> e. W ) |
| 164 | 2 1 3 4 | frgpadd | |- ( ( <" <. A , (/) >. "> e. W /\ <" <. B , (/) >. "> e. W ) -> ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) |
| 165 | 161 163 164 | syl2anc | |- ( ph -> ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) |
| 166 | 159 165 | eqtrd | |- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) |
| 167 | 154 166 | eleqtrrd | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) |
| 168 | 145 167 | elind | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( D i^i ( ( U ` A ) .+ ( U ` B ) ) ) ) |