This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for frgpnabl . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpnabl.g | |- G = ( freeGrp ` I ) |
|
| frgpnabl.w | |- W = ( _I ` Word ( I X. 2o ) ) |
||
| frgpnabl.r | |- .~ = ( ~FG ` I ) |
||
| frgpnabl.p | |- .+ = ( +g ` G ) |
||
| frgpnabl.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| frgpnabl.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| frgpnabl.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| frgpnabl.u | |- U = ( varFGrp ` I ) |
||
| frgpnabl.i | |- ( ph -> I e. V ) |
||
| frgpnabl.a | |- ( ph -> A e. I ) |
||
| frgpnabl.b | |- ( ph -> B e. I ) |
||
| frgpnabl.n | |- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = ( ( U ` B ) .+ ( U ` A ) ) ) |
||
| Assertion | frgpnabllem2 | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpnabl.g | |- G = ( freeGrp ` I ) |
|
| 2 | frgpnabl.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 3 | frgpnabl.r | |- .~ = ( ~FG ` I ) |
|
| 4 | frgpnabl.p | |- .+ = ( +g ` G ) |
|
| 5 | frgpnabl.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 6 | frgpnabl.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 7 | frgpnabl.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 8 | frgpnabl.u | |- U = ( varFGrp ` I ) |
|
| 9 | frgpnabl.i | |- ( ph -> I e. V ) |
|
| 10 | frgpnabl.a | |- ( ph -> A e. I ) |
|
| 11 | frgpnabl.b | |- ( ph -> B e. I ) |
|
| 12 | frgpnabl.n | |- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = ( ( U ` B ) .+ ( U ` A ) ) ) |
|
| 13 | 0ex | |- (/) e. _V |
|
| 14 | 13 | a1i | |- ( ph -> (/) e. _V ) |
| 15 | difss | |- ( W \ U_ x e. W ran ( T ` x ) ) C_ W |
|
| 16 | 7 15 | eqsstri | |- D C_ W |
| 17 | 1 2 3 4 5 6 7 8 9 11 10 | frgpnabllem1 | |- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. ( D i^i ( ( U ` B ) .+ ( U ` A ) ) ) ) |
| 18 | 17 | elin1d | |- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. D ) |
| 19 | 16 18 | sselid | |- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. W ) |
| 20 | eqid | |- ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 21 | 2 3 5 6 7 20 | efgredeu | |- ( <" <. B , (/) >. <. A , (/) >. "> e. W -> E! d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> ) |
| 22 | reurmo | |- ( E! d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> -> E* d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> ) |
|
| 23 | 19 21 22 | 3syl | |- ( ph -> E* d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> ) |
| 24 | 1 2 3 4 5 6 7 8 9 10 11 | frgpnabllem1 | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( D i^i ( ( U ` A ) .+ ( U ` B ) ) ) ) |
| 25 | 24 | elin1d | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. D ) |
| 26 | 2 3 | efger | |- .~ Er W |
| 27 | 26 | a1i | |- ( ph -> .~ Er W ) |
| 28 | 1 | frgpgrp | |- ( I e. V -> G e. Grp ) |
| 29 | 9 28 | syl | |- ( ph -> G e. Grp ) |
| 30 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 31 | 3 8 1 30 | vrgpf | |- ( I e. V -> U : I --> ( Base ` G ) ) |
| 32 | 9 31 | syl | |- ( ph -> U : I --> ( Base ` G ) ) |
| 33 | 32 10 | ffvelcdmd | |- ( ph -> ( U ` A ) e. ( Base ` G ) ) |
| 34 | 32 11 | ffvelcdmd | |- ( ph -> ( U ` B ) e. ( Base ` G ) ) |
| 35 | 30 4 | grpcl | |- ( ( G e. Grp /\ ( U ` A ) e. ( Base ` G ) /\ ( U ` B ) e. ( Base ` G ) ) -> ( ( U ` A ) .+ ( U ` B ) ) e. ( Base ` G ) ) |
| 36 | 29 33 34 35 | syl3anc | |- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) e. ( Base ` G ) ) |
| 37 | eqid | |- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
|
| 38 | 1 37 3 | frgpval | |- ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 39 | 9 38 | syl | |- ( ph -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 40 | 2on | |- 2o e. On |
|
| 41 | xpexg | |- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 42 | 9 40 41 | sylancl | |- ( ph -> ( I X. 2o ) e. _V ) |
| 43 | wrdexg | |- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
|
| 44 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 45 | 42 43 44 | 3syl | |- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 46 | 2 45 | eqtrid | |- ( ph -> W = Word ( I X. 2o ) ) |
| 47 | eqid | |- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
|
| 48 | 37 47 | frmdbas | |- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 49 | 42 48 | syl | |- ( ph -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 50 | 46 49 | eqtr4d | |- ( ph -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 51 | 3 | fvexi | |- .~ e. _V |
| 52 | 51 | a1i | |- ( ph -> .~ e. _V ) |
| 53 | fvexd | |- ( ph -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
|
| 54 | 39 50 52 53 | qusbas | |- ( ph -> ( W /. .~ ) = ( Base ` G ) ) |
| 55 | 36 54 | eleqtrrd | |- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) e. ( W /. .~ ) ) |
| 56 | 24 | elin2d | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) |
| 57 | qsel | |- ( ( .~ Er W /\ ( ( U ` A ) .+ ( U ` B ) ) e. ( W /. .~ ) /\ <" <. A , (/) >. <. B , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) -> ( ( U ` A ) .+ ( U ` B ) ) = [ <" <. A , (/) >. <. B , (/) >. "> ] .~ ) |
|
| 58 | 27 55 56 57 | syl3anc | |- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = [ <" <. A , (/) >. <. B , (/) >. "> ] .~ ) |
| 59 | 17 | elin2d | |- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. ( ( U ` B ) .+ ( U ` A ) ) ) |
| 60 | 59 12 | eleqtrrd | |- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) |
| 61 | qsel | |- ( ( .~ Er W /\ ( ( U ` A ) .+ ( U ` B ) ) e. ( W /. .~ ) /\ <" <. B , (/) >. <. A , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) -> ( ( U ` A ) .+ ( U ` B ) ) = [ <" <. B , (/) >. <. A , (/) >. "> ] .~ ) |
|
| 62 | 27 55 60 61 | syl3anc | |- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = [ <" <. B , (/) >. <. A , (/) >. "> ] .~ ) |
| 63 | 58 62 | eqtr3d | |- ( ph -> [ <" <. A , (/) >. <. B , (/) >. "> ] .~ = [ <" <. B , (/) >. <. A , (/) >. "> ] .~ ) |
| 64 | 16 25 | sselid | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. W ) |
| 65 | 27 64 | erth | |- ( ph -> ( <" <. A , (/) >. <. B , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> <-> [ <" <. A , (/) >. <. B , (/) >. "> ] .~ = [ <" <. B , (/) >. <. A , (/) >. "> ] .~ ) ) |
| 66 | 63 65 | mpbird | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) |
| 67 | 27 19 | erref | |- ( ph -> <" <. B , (/) >. <. A , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) |
| 68 | breq1 | |- ( d = <" <. A , (/) >. <. B , (/) >. "> -> ( d .~ <" <. B , (/) >. <. A , (/) >. "> <-> <" <. A , (/) >. <. B , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) ) |
|
| 69 | breq1 | |- ( d = <" <. B , (/) >. <. A , (/) >. "> -> ( d .~ <" <. B , (/) >. <. A , (/) >. "> <-> <" <. B , (/) >. <. A , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) ) |
|
| 70 | 68 69 | rmoi | |- ( ( E* d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> /\ ( <" <. A , (/) >. <. B , (/) >. "> e. D /\ <" <. A , (/) >. <. B , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) /\ ( <" <. B , (/) >. <. A , (/) >. "> e. D /\ <" <. B , (/) >. <. A , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) ) -> <" <. A , (/) >. <. B , (/) >. "> = <" <. B , (/) >. <. A , (/) >. "> ) |
| 71 | 23 25 66 18 67 70 | syl122anc | |- ( ph -> <" <. A , (/) >. <. B , (/) >. "> = <" <. B , (/) >. <. A , (/) >. "> ) |
| 72 | 71 | fveq1d | |- ( ph -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = ( <" <. B , (/) >. <. A , (/) >. "> ` 0 ) ) |
| 73 | opex | |- <. A , (/) >. e. _V |
|
| 74 | s2fv0 | |- ( <. A , (/) >. e. _V -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. ) |
|
| 75 | 73 74 | ax-mp | |- ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. |
| 76 | opex | |- <. B , (/) >. e. _V |
|
| 77 | s2fv0 | |- ( <. B , (/) >. e. _V -> ( <" <. B , (/) >. <. A , (/) >. "> ` 0 ) = <. B , (/) >. ) |
|
| 78 | 76 77 | ax-mp | |- ( <" <. B , (/) >. <. A , (/) >. "> ` 0 ) = <. B , (/) >. |
| 79 | 72 75 78 | 3eqtr3g | |- ( ph -> <. A , (/) >. = <. B , (/) >. ) |
| 80 | opthg | |- ( ( A e. I /\ (/) e. _V ) -> ( <. A , (/) >. = <. B , (/) >. <-> ( A = B /\ (/) = (/) ) ) ) |
|
| 81 | 80 | simprbda | |- ( ( ( A e. I /\ (/) e. _V ) /\ <. A , (/) >. = <. B , (/) >. ) -> A = B ) |
| 82 | 10 14 79 81 | syl21anc | |- ( ph -> A = B ) |