This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| elrnmpo.1 | |- C e. _V |
||
| Assertion | elrnmpo | |- ( D e. ran F <-> E. x e. A E. y e. B D = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | elrnmpo.1 | |- C e. _V |
|
| 3 | 1 | rnmpo | |- ran F = { z | E. x e. A E. y e. B z = C } |
| 4 | 3 | eleq2i | |- ( D e. ran F <-> D e. { z | E. x e. A E. y e. B z = C } ) |
| 5 | eleq1 | |- ( D = C -> ( D e. _V <-> C e. _V ) ) |
|
| 6 | 2 5 | mpbiri | |- ( D = C -> D e. _V ) |
| 7 | 6 | rexlimivw | |- ( E. y e. B D = C -> D e. _V ) |
| 8 | 7 | rexlimivw | |- ( E. x e. A E. y e. B D = C -> D e. _V ) |
| 9 | eqeq1 | |- ( z = D -> ( z = C <-> D = C ) ) |
|
| 10 | 9 | 2rexbidv | |- ( z = D -> ( E. x e. A E. y e. B z = C <-> E. x e. A E. y e. B D = C ) ) |
| 11 | 8 10 | elab3 | |- ( D e. { z | E. x e. A E. y e. B z = C } <-> E. x e. A E. y e. B D = C ) |
| 12 | 4 11 | bitri | |- ( D e. ran F <-> E. x e. A E. y e. B D = C ) |