This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgmval.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| Assertion | efgmval | |- ( ( A e. I /\ B e. 2o ) -> ( A M B ) = <. A , ( 1o \ B ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgmval.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 2 | opeq1 | |- ( a = A -> <. a , ( 1o \ b ) >. = <. A , ( 1o \ b ) >. ) |
|
| 3 | difeq2 | |- ( b = B -> ( 1o \ b ) = ( 1o \ B ) ) |
|
| 4 | 3 | opeq2d | |- ( b = B -> <. A , ( 1o \ b ) >. = <. A , ( 1o \ B ) >. ) |
| 5 | opeq1 | |- ( y = a -> <. y , ( 1o \ z ) >. = <. a , ( 1o \ z ) >. ) |
|
| 6 | difeq2 | |- ( z = b -> ( 1o \ z ) = ( 1o \ b ) ) |
|
| 7 | 6 | opeq2d | |- ( z = b -> <. a , ( 1o \ z ) >. = <. a , ( 1o \ b ) >. ) |
| 8 | 5 7 | cbvmpov | |- ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) = ( a e. I , b e. 2o |-> <. a , ( 1o \ b ) >. ) |
| 9 | 1 8 | eqtri | |- M = ( a e. I , b e. 2o |-> <. a , ( 1o \ b ) >. ) |
| 10 | opex | |- <. A , ( 1o \ B ) >. e. _V |
|
| 11 | 2 4 9 10 | ovmpo | |- ( ( A e. I /\ B e. 2o ) -> ( A M B ) = <. A , ( 1o \ B ) >. ) |