This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpadd.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| frgpadd.g | |- G = ( freeGrp ` I ) |
||
| frgpadd.r | |- .~ = ( ~FG ` I ) |
||
| frgpadd.n | |- .+ = ( +g ` G ) |
||
| Assertion | frgpadd | |- ( ( A e. W /\ B e. W ) -> ( [ A ] .~ .+ [ B ] .~ ) = [ ( A ++ B ) ] .~ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpadd.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | frgpadd.g | |- G = ( freeGrp ` I ) |
|
| 3 | frgpadd.r | |- .~ = ( ~FG ` I ) |
|
| 4 | frgpadd.n | |- .+ = ( +g ` G ) |
|
| 5 | simpl | |- ( ( A e. W /\ B e. W ) -> A e. W ) |
|
| 6 | simpr | |- ( ( A e. W /\ B e. W ) -> B e. W ) |
|
| 7 | 1 | efgrcl | |- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 8 | 7 | adantr | |- ( ( A e. W /\ B e. W ) -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 9 | 8 | simpld | |- ( ( A e. W /\ B e. W ) -> I e. _V ) |
| 10 | eqid | |- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
|
| 11 | 2 10 3 | frgpval | |- ( I e. _V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 12 | 9 11 | syl | |- ( ( A e. W /\ B e. W ) -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 13 | 8 | simprd | |- ( ( A e. W /\ B e. W ) -> W = Word ( I X. 2o ) ) |
| 14 | 2on | |- 2o e. On |
|
| 15 | xpexg | |- ( ( I e. _V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 16 | 9 14 15 | sylancl | |- ( ( A e. W /\ B e. W ) -> ( I X. 2o ) e. _V ) |
| 17 | eqid | |- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
|
| 18 | 10 17 | frmdbas | |- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 19 | 16 18 | syl | |- ( ( A e. W /\ B e. W ) -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 20 | 13 19 | eqtr4d | |- ( ( A e. W /\ B e. W ) -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 21 | 1 3 | efger | |- .~ Er W |
| 22 | 21 | a1i | |- ( ( A e. W /\ B e. W ) -> .~ Er W ) |
| 23 | 10 | frmdmnd | |- ( ( I X. 2o ) e. _V -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
| 24 | 16 23 | syl | |- ( ( A e. W /\ B e. W ) -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
| 25 | eqid | |- ( +g ` ( freeMnd ` ( I X. 2o ) ) ) = ( +g ` ( freeMnd ` ( I X. 2o ) ) ) |
|
| 26 | 2 10 3 25 | frgpcpbl | |- ( ( a .~ b /\ c .~ d ) -> ( a ( +g ` ( freeMnd ` ( I X. 2o ) ) ) c ) .~ ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) ) |
| 27 | 26 | a1i | |- ( ( A e. W /\ B e. W ) -> ( ( a .~ b /\ c .~ d ) -> ( a ( +g ` ( freeMnd ` ( I X. 2o ) ) ) c ) .~ ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) ) ) |
| 28 | 24 | adantr | |- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
| 29 | simprl | |- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> b e. W ) |
|
| 30 | 20 | adantr | |- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 31 | 29 30 | eleqtrd | |- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> b e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 32 | simprr | |- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> d e. W ) |
|
| 33 | 32 30 | eleqtrd | |- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> d e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 34 | 17 25 | mndcl | |- ( ( ( freeMnd ` ( I X. 2o ) ) e. Mnd /\ b e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ d e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 35 | 28 31 33 34 | syl3anc | |- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 36 | 35 30 | eleqtrrd | |- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) e. W ) |
| 37 | 12 20 22 24 27 36 25 4 | qusaddval | |- ( ( ( A e. W /\ B e. W ) /\ A e. W /\ B e. W ) -> ( [ A ] .~ .+ [ B ] .~ ) = [ ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) ] .~ ) |
| 38 | 5 6 37 | mpd3an23 | |- ( ( A e. W /\ B e. W ) -> ( [ A ] .~ .+ [ B ] .~ ) = [ ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) ] .~ ) |
| 39 | 5 20 | eleqtrd | |- ( ( A e. W /\ B e. W ) -> A e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 40 | 6 20 | eleqtrd | |- ( ( A e. W /\ B e. W ) -> B e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 41 | 10 17 25 | frmdadd | |- ( ( A e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ B e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) = ( A ++ B ) ) |
| 42 | 39 40 41 | syl2anc | |- ( ( A e. W /\ B e. W ) -> ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) = ( A ++ B ) ) |
| 43 | 42 | eceq1d | |- ( ( A e. W /\ B e. W ) -> [ ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) ] .~ = [ ( A ++ B ) ] .~ ) |
| 44 | 38 43 | eqtrd | |- ( ( A e. W /\ B e. W ) -> ( [ A ] .~ .+ [ B ] .~ ) = [ ( A ++ B ) ] .~ ) |