This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair theorem. C and D are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opthg | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 | |- ( x = A -> <. x , y >. = <. A , y >. ) |
|
| 2 | 1 | eqeq1d | |- ( x = A -> ( <. x , y >. = <. C , D >. <-> <. A , y >. = <. C , D >. ) ) |
| 3 | eqeq1 | |- ( x = A -> ( x = C <-> A = C ) ) |
|
| 4 | 3 | anbi1d | |- ( x = A -> ( ( x = C /\ y = D ) <-> ( A = C /\ y = D ) ) ) |
| 5 | 2 4 | bibi12d | |- ( x = A -> ( ( <. x , y >. = <. C , D >. <-> ( x = C /\ y = D ) ) <-> ( <. A , y >. = <. C , D >. <-> ( A = C /\ y = D ) ) ) ) |
| 6 | opeq2 | |- ( y = B -> <. A , y >. = <. A , B >. ) |
|
| 7 | 6 | eqeq1d | |- ( y = B -> ( <. A , y >. = <. C , D >. <-> <. A , B >. = <. C , D >. ) ) |
| 8 | eqeq1 | |- ( y = B -> ( y = D <-> B = D ) ) |
|
| 9 | 8 | anbi2d | |- ( y = B -> ( ( A = C /\ y = D ) <-> ( A = C /\ B = D ) ) ) |
| 10 | 7 9 | bibi12d | |- ( y = B -> ( ( <. A , y >. = <. C , D >. <-> ( A = C /\ y = D ) ) <-> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) ) |
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | opth | |- ( <. x , y >. = <. C , D >. <-> ( x = C /\ y = D ) ) |
| 14 | 5 10 13 | vtocl2g | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |