This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efsub | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( A - B ) ) = ( ( exp ` A ) / ( exp ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 2 | efcl | |- ( B e. CC -> ( exp ` B ) e. CC ) |
|
| 3 | efne0 | |- ( B e. CC -> ( exp ` B ) =/= 0 ) |
|
| 4 | divrec | |- ( ( ( exp ` A ) e. CC /\ ( exp ` B ) e. CC /\ ( exp ` B ) =/= 0 ) -> ( ( exp ` A ) / ( exp ` B ) ) = ( ( exp ` A ) x. ( 1 / ( exp ` B ) ) ) ) |
|
| 5 | 1 2 3 4 | syl3an | |- ( ( A e. CC /\ B e. CC /\ B e. CC ) -> ( ( exp ` A ) / ( exp ` B ) ) = ( ( exp ` A ) x. ( 1 / ( exp ` B ) ) ) ) |
| 6 | 5 | 3anidm23 | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` A ) / ( exp ` B ) ) = ( ( exp ` A ) x. ( 1 / ( exp ` B ) ) ) ) |
| 7 | efcan | |- ( B e. CC -> ( ( exp ` B ) x. ( exp ` -u B ) ) = 1 ) |
|
| 8 | 7 | eqcomd | |- ( B e. CC -> 1 = ( ( exp ` B ) x. ( exp ` -u B ) ) ) |
| 9 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 10 | efcl | |- ( -u B e. CC -> ( exp ` -u B ) e. CC ) |
|
| 11 | 9 10 | syl | |- ( B e. CC -> ( exp ` -u B ) e. CC ) |
| 12 | ax-1cn | |- 1 e. CC |
|
| 13 | divmul2 | |- ( ( 1 e. CC /\ ( exp ` -u B ) e. CC /\ ( ( exp ` B ) e. CC /\ ( exp ` B ) =/= 0 ) ) -> ( ( 1 / ( exp ` B ) ) = ( exp ` -u B ) <-> 1 = ( ( exp ` B ) x. ( exp ` -u B ) ) ) ) |
|
| 14 | 12 13 | mp3an1 | |- ( ( ( exp ` -u B ) e. CC /\ ( ( exp ` B ) e. CC /\ ( exp ` B ) =/= 0 ) ) -> ( ( 1 / ( exp ` B ) ) = ( exp ` -u B ) <-> 1 = ( ( exp ` B ) x. ( exp ` -u B ) ) ) ) |
| 15 | 11 2 3 14 | syl12anc | |- ( B e. CC -> ( ( 1 / ( exp ` B ) ) = ( exp ` -u B ) <-> 1 = ( ( exp ` B ) x. ( exp ` -u B ) ) ) ) |
| 16 | 8 15 | mpbird | |- ( B e. CC -> ( 1 / ( exp ` B ) ) = ( exp ` -u B ) ) |
| 17 | 16 | oveq2d | |- ( B e. CC -> ( ( exp ` A ) x. ( 1 / ( exp ` B ) ) ) = ( ( exp ` A ) x. ( exp ` -u B ) ) ) |
| 18 | 17 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` A ) x. ( 1 / ( exp ` B ) ) ) = ( ( exp ` A ) x. ( exp ` -u B ) ) ) |
| 19 | efadd | |- ( ( A e. CC /\ -u B e. CC ) -> ( exp ` ( A + -u B ) ) = ( ( exp ` A ) x. ( exp ` -u B ) ) ) |
|
| 20 | 9 19 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( A + -u B ) ) = ( ( exp ` A ) x. ( exp ` -u B ) ) ) |
| 21 | 18 20 | eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` A ) x. ( 1 / ( exp ` B ) ) ) = ( exp ` ( A + -u B ) ) ) |
| 22 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 23 | 22 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( A + -u B ) ) = ( exp ` ( A - B ) ) ) |
| 24 | 6 21 23 | 3eqtrrd | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( A - B ) ) = ( ( exp ` A ) / ( exp ` B ) ) ) |