This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left group action of element A in a topological monoid G is a continuous function. (Contributed by FL, 18-Mar-2008) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgplacthmeo.1 | |- F = ( x e. X |-> ( A .+ x ) ) |
|
| tgplacthmeo.2 | |- X = ( Base ` G ) |
||
| tgplacthmeo.3 | |- .+ = ( +g ` G ) |
||
| tgplacthmeo.4 | |- J = ( TopOpen ` G ) |
||
| Assertion | tmdlactcn | |- ( ( G e. TopMnd /\ A e. X ) -> F e. ( J Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgplacthmeo.1 | |- F = ( x e. X |-> ( A .+ x ) ) |
|
| 2 | tgplacthmeo.2 | |- X = ( Base ` G ) |
|
| 3 | tgplacthmeo.3 | |- .+ = ( +g ` G ) |
|
| 4 | tgplacthmeo.4 | |- J = ( TopOpen ` G ) |
|
| 5 | simpl | |- ( ( G e. TopMnd /\ A e. X ) -> G e. TopMnd ) |
|
| 6 | 4 2 | tmdtopon | |- ( G e. TopMnd -> J e. ( TopOn ` X ) ) |
| 7 | 6 | adantr | |- ( ( G e. TopMnd /\ A e. X ) -> J e. ( TopOn ` X ) ) |
| 8 | simpr | |- ( ( G e. TopMnd /\ A e. X ) -> A e. X ) |
|
| 9 | 7 7 8 | cnmptc | |- ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> A ) e. ( J Cn J ) ) |
| 10 | 7 | cnmptid | |- ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> x ) e. ( J Cn J ) ) |
| 11 | 4 3 5 7 9 10 | cnmpt1plusg | |- ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> ( A .+ x ) ) e. ( J Cn J ) ) |
| 12 | 1 11 | eqeltrid | |- ( ( G e. TopMnd /\ A e. X ) -> F e. ( J Cn J ) ) |