This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndtset.g | |- G = ( EndoFMnd ` A ) |
|
| efmndplusg.b | |- B = ( Base ` G ) |
||
| efmndplusg.p | |- .+ = ( +g ` G ) |
||
| Assertion | efmndplusg | |- .+ = ( f e. B , g e. B |-> ( f o. g ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndtset.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | efmndplusg.b | |- B = ( Base ` G ) |
|
| 3 | efmndplusg.p | |- .+ = ( +g ` G ) |
|
| 4 | 1 2 | efmndbas | |- B = ( A ^m A ) |
| 5 | eqid | |- ( f e. B , g e. B |-> ( f o. g ) ) = ( f e. B , g e. B |-> ( f o. g ) ) |
|
| 6 | eqid | |- ( Xt_ ` ( A X. { ~P A } ) ) = ( Xt_ ` ( A X. { ~P A } ) ) |
|
| 7 | 1 4 5 6 | efmnd | |- ( A e. _V -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( f e. B , g e. B |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) |
| 8 | 7 | fveq2d | |- ( A e. _V -> ( +g ` G ) = ( +g ` { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( f e. B , g e. B |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) ) |
| 9 | 2 | fvexi | |- B e. _V |
| 10 | 9 9 | mpoex | |- ( f e. B , g e. B |-> ( f o. g ) ) e. _V |
| 11 | eqid | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( f e. B , g e. B |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( f e. B , g e. B |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } |
|
| 12 | 11 | topgrpplusg | |- ( ( f e. B , g e. B |-> ( f o. g ) ) e. _V -> ( f e. B , g e. B |-> ( f o. g ) ) = ( +g ` { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( f e. B , g e. B |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) ) |
| 13 | 10 12 | ax-mp | |- ( f e. B , g e. B |-> ( f o. g ) ) = ( +g ` { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( f e. B , g e. B |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) |
| 14 | 8 3 13 | 3eqtr4g | |- ( A e. _V -> .+ = ( f e. B , g e. B |-> ( f o. g ) ) ) |
| 15 | fvprc | |- ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) |
|
| 16 | 1 15 | eqtrid | |- ( -. A e. _V -> G = (/) ) |
| 17 | 16 | fveq2d | |- ( -. A e. _V -> ( +g ` G ) = ( +g ` (/) ) ) |
| 18 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 19 | 18 | str0 | |- (/) = ( +g ` (/) ) |
| 20 | 17 3 19 | 3eqtr4g | |- ( -. A e. _V -> .+ = (/) ) |
| 21 | 16 | fveq2d | |- ( -. A e. _V -> ( Base ` G ) = ( Base ` (/) ) ) |
| 22 | base0 | |- (/) = ( Base ` (/) ) |
|
| 23 | 21 2 22 | 3eqtr4g | |- ( -. A e. _V -> B = (/) ) |
| 24 | 23 | olcd | |- ( -. A e. _V -> ( B = (/) \/ B = (/) ) ) |
| 25 | 0mpo0 | |- ( ( B = (/) \/ B = (/) ) -> ( f e. B , g e. B |-> ( f o. g ) ) = (/) ) |
|
| 26 | 24 25 | syl | |- ( -. A e. _V -> ( f e. B , g e. B |-> ( f o. g ) ) = (/) ) |
| 27 | 20 26 | eqtr4d | |- ( -. A e. _V -> .+ = ( f e. B , g e. B |-> ( f o. g ) ) ) |
| 28 | 14 27 | pm2.61i | |- .+ = ( f e. B , g e. B |-> ( f o. g ) ) |