This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt1res.2 | |- K = ( J |`t Y ) |
|
| cnmpt1res.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| cnmpt1res.5 | |- ( ph -> Y C_ X ) |
||
| cnmpt2res.7 | |- N = ( M |`t W ) |
||
| cnmpt2res.8 | |- ( ph -> M e. ( TopOn ` Z ) ) |
||
| cnmpt2res.9 | |- ( ph -> W C_ Z ) |
||
| cnmpt2res.10 | |- ( ph -> ( x e. X , y e. Z |-> A ) e. ( ( J tX M ) Cn L ) ) |
||
| Assertion | cnmpt2res | |- ( ph -> ( x e. Y , y e. W |-> A ) e. ( ( K tX N ) Cn L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1res.2 | |- K = ( J |`t Y ) |
|
| 2 | cnmpt1res.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | cnmpt1res.5 | |- ( ph -> Y C_ X ) |
|
| 4 | cnmpt2res.7 | |- N = ( M |`t W ) |
|
| 5 | cnmpt2res.8 | |- ( ph -> M e. ( TopOn ` Z ) ) |
|
| 6 | cnmpt2res.9 | |- ( ph -> W C_ Z ) |
|
| 7 | cnmpt2res.10 | |- ( ph -> ( x e. X , y e. Z |-> A ) e. ( ( J tX M ) Cn L ) ) |
|
| 8 | xpss12 | |- ( ( Y C_ X /\ W C_ Z ) -> ( Y X. W ) C_ ( X X. Z ) ) |
|
| 9 | 3 6 8 | syl2anc | |- ( ph -> ( Y X. W ) C_ ( X X. Z ) ) |
| 10 | txtopon | |- ( ( J e. ( TopOn ` X ) /\ M e. ( TopOn ` Z ) ) -> ( J tX M ) e. ( TopOn ` ( X X. Z ) ) ) |
|
| 11 | 2 5 10 | syl2anc | |- ( ph -> ( J tX M ) e. ( TopOn ` ( X X. Z ) ) ) |
| 12 | toponuni | |- ( ( J tX M ) e. ( TopOn ` ( X X. Z ) ) -> ( X X. Z ) = U. ( J tX M ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( X X. Z ) = U. ( J tX M ) ) |
| 14 | 9 13 | sseqtrd | |- ( ph -> ( Y X. W ) C_ U. ( J tX M ) ) |
| 15 | eqid | |- U. ( J tX M ) = U. ( J tX M ) |
|
| 16 | 15 | cnrest | |- ( ( ( x e. X , y e. Z |-> A ) e. ( ( J tX M ) Cn L ) /\ ( Y X. W ) C_ U. ( J tX M ) ) -> ( ( x e. X , y e. Z |-> A ) |` ( Y X. W ) ) e. ( ( ( J tX M ) |`t ( Y X. W ) ) Cn L ) ) |
| 17 | 7 14 16 | syl2anc | |- ( ph -> ( ( x e. X , y e. Z |-> A ) |` ( Y X. W ) ) e. ( ( ( J tX M ) |`t ( Y X. W ) ) Cn L ) ) |
| 18 | resmpo | |- ( ( Y C_ X /\ W C_ Z ) -> ( ( x e. X , y e. Z |-> A ) |` ( Y X. W ) ) = ( x e. Y , y e. W |-> A ) ) |
|
| 19 | 3 6 18 | syl2anc | |- ( ph -> ( ( x e. X , y e. Z |-> A ) |` ( Y X. W ) ) = ( x e. Y , y e. W |-> A ) ) |
| 20 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 21 | 2 20 | syl | |- ( ph -> J e. Top ) |
| 22 | topontop | |- ( M e. ( TopOn ` Z ) -> M e. Top ) |
|
| 23 | 5 22 | syl | |- ( ph -> M e. Top ) |
| 24 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 25 | 2 24 | syl | |- ( ph -> X e. J ) |
| 26 | 25 3 | ssexd | |- ( ph -> Y e. _V ) |
| 27 | toponmax | |- ( M e. ( TopOn ` Z ) -> Z e. M ) |
|
| 28 | 5 27 | syl | |- ( ph -> Z e. M ) |
| 29 | 28 6 | ssexd | |- ( ph -> W e. _V ) |
| 30 | txrest | |- ( ( ( J e. Top /\ M e. Top ) /\ ( Y e. _V /\ W e. _V ) ) -> ( ( J tX M ) |`t ( Y X. W ) ) = ( ( J |`t Y ) tX ( M |`t W ) ) ) |
|
| 31 | 21 23 26 29 30 | syl22anc | |- ( ph -> ( ( J tX M ) |`t ( Y X. W ) ) = ( ( J |`t Y ) tX ( M |`t W ) ) ) |
| 32 | 1 4 | oveq12i | |- ( K tX N ) = ( ( J |`t Y ) tX ( M |`t W ) ) |
| 33 | 31 32 | eqtr4di | |- ( ph -> ( ( J tX M ) |`t ( Y X. W ) ) = ( K tX N ) ) |
| 34 | 33 | oveq1d | |- ( ph -> ( ( ( J tX M ) |`t ( Y X. W ) ) Cn L ) = ( ( K tX N ) Cn L ) ) |
| 35 | 17 19 34 | 3eltr3d | |- ( ph -> ( x e. Y , y e. W |-> A ) e. ( ( K tX N ) Cn L ) ) |