This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a set A is actually a monoid. (Contributed by AV, 31-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ielefmnd.g | |- G = ( EndoFMnd ` A ) |
|
| Assertion | efmndmnd | |- ( A e. V -> G e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ielefmnd.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | 1 | efmndsgrp | |- G e. Smgrp |
| 3 | 2 | a1i | |- ( A e. V -> G e. Smgrp ) |
| 4 | 1 | ielefmnd | |- ( A e. V -> ( _I |` A ) e. ( Base ` G ) ) |
| 5 | oveq1 | |- ( i = ( _I |` A ) -> ( i ( +g ` G ) f ) = ( ( _I |` A ) ( +g ` G ) f ) ) |
|
| 6 | 5 | eqeq1d | |- ( i = ( _I |` A ) -> ( ( i ( +g ` G ) f ) = f <-> ( ( _I |` A ) ( +g ` G ) f ) = f ) ) |
| 7 | oveq2 | |- ( i = ( _I |` A ) -> ( f ( +g ` G ) i ) = ( f ( +g ` G ) ( _I |` A ) ) ) |
|
| 8 | 7 | eqeq1d | |- ( i = ( _I |` A ) -> ( ( f ( +g ` G ) i ) = f <-> ( f ( +g ` G ) ( _I |` A ) ) = f ) ) |
| 9 | 6 8 | anbi12d | |- ( i = ( _I |` A ) -> ( ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) <-> ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) ) |
| 10 | 9 | ralbidv | |- ( i = ( _I |` A ) -> ( A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) <-> A. f e. ( Base ` G ) ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) ) |
| 11 | 10 | adantl | |- ( ( A e. V /\ i = ( _I |` A ) ) -> ( A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) <-> A. f e. ( Base ` G ) ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) ) |
| 12 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 13 | 1 12 | efmndbasf | |- ( f e. ( Base ` G ) -> f : A --> A ) |
| 14 | 13 | adantl | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> f : A --> A ) |
| 15 | fcoi2 | |- ( f : A --> A -> ( ( _I |` A ) o. f ) = f ) |
|
| 16 | fcoi1 | |- ( f : A --> A -> ( f o. ( _I |` A ) ) = f ) |
|
| 17 | 15 16 | jca | |- ( f : A --> A -> ( ( ( _I |` A ) o. f ) = f /\ ( f o. ( _I |` A ) ) = f ) ) |
| 18 | 14 17 | syl | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( ( _I |` A ) o. f ) = f /\ ( f o. ( _I |` A ) ) = f ) ) |
| 19 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 20 | 1 12 19 | efmndov | |- ( ( ( _I |` A ) e. ( Base ` G ) /\ f e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) f ) = ( ( _I |` A ) o. f ) ) |
| 21 | 4 20 | sylan | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) f ) = ( ( _I |` A ) o. f ) ) |
| 22 | 21 | eqeq1d | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( ( _I |` A ) ( +g ` G ) f ) = f <-> ( ( _I |` A ) o. f ) = f ) ) |
| 23 | 4 | anim1ci | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( f e. ( Base ` G ) /\ ( _I |` A ) e. ( Base ` G ) ) ) |
| 24 | 1 12 19 | efmndov | |- ( ( f e. ( Base ` G ) /\ ( _I |` A ) e. ( Base ` G ) ) -> ( f ( +g ` G ) ( _I |` A ) ) = ( f o. ( _I |` A ) ) ) |
| 25 | 23 24 | syl | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( f ( +g ` G ) ( _I |` A ) ) = ( f o. ( _I |` A ) ) ) |
| 26 | 25 | eqeq1d | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( f ( +g ` G ) ( _I |` A ) ) = f <-> ( f o. ( _I |` A ) ) = f ) ) |
| 27 | 22 26 | anbi12d | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) <-> ( ( ( _I |` A ) o. f ) = f /\ ( f o. ( _I |` A ) ) = f ) ) ) |
| 28 | 18 27 | mpbird | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) |
| 29 | 28 | ralrimiva | |- ( A e. V -> A. f e. ( Base ` G ) ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) |
| 30 | 4 11 29 | rspcedvd | |- ( A e. V -> E. i e. ( Base ` G ) A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) ) |
| 31 | 12 19 | ismnddef | |- ( G e. Mnd <-> ( G e. Smgrp /\ E. i e. ( Base ` G ) A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) ) ) |
| 32 | 3 30 31 | sylanbrc | |- ( A e. V -> G e. Mnd ) |