This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the monoid of endofunctions on class A . (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
| efmndbas.b | |- B = ( Base ` G ) |
||
| Assertion | efmndbas | |- B = ( A ^m A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | efmndbas.b | |- B = ( Base ` G ) |
|
| 3 | ovex | |- ( A ^m A ) e. _V |
|
| 4 | eqid | |- { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } = { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } |
|
| 5 | 4 | topgrpbas | |- ( ( A ^m A ) e. _V -> ( A ^m A ) = ( Base ` { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) ) |
| 6 | 3 5 | mp1i | |- ( A e. _V -> ( A ^m A ) = ( Base ` { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) ) |
| 7 | eqid | |- ( A ^m A ) = ( A ^m A ) |
|
| 8 | eqid | |- ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) = ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) |
|
| 9 | eqid | |- ( Xt_ ` ( A X. { ~P A } ) ) = ( Xt_ ` ( A X. { ~P A } ) ) |
|
| 10 | 1 7 8 9 | efmnd | |- ( A e. _V -> G = { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) |
| 11 | 10 | fveq2d | |- ( A e. _V -> ( Base ` G ) = ( Base ` { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) ) |
| 12 | 6 11 | eqtr4d | |- ( A e. _V -> ( A ^m A ) = ( Base ` G ) ) |
| 13 | base0 | |- (/) = ( Base ` (/) ) |
|
| 14 | reldmmap | |- Rel dom ^m |
|
| 15 | 14 | ovprc1 | |- ( -. A e. _V -> ( A ^m A ) = (/) ) |
| 16 | fvprc | |- ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) |
|
| 17 | 1 16 | eqtrid | |- ( -. A e. _V -> G = (/) ) |
| 18 | 17 | fveq2d | |- ( -. A e. _V -> ( Base ` G ) = ( Base ` (/) ) ) |
| 19 | 13 15 18 | 3eqtr4a | |- ( -. A e. _V -> ( A ^m A ) = ( Base ` G ) ) |
| 20 | 12 19 | pm2.61i | |- ( A ^m A ) = ( Base ` G ) |
| 21 | 2 20 | eqtr4i | |- B = ( A ^m A ) |