This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptuniconst.2 | |- J = ( Xt_ ` ( A X. { R } ) ) |
|
| Assertion | pttoponconst | |- ( ( A e. V /\ R e. ( TopOn ` X ) ) -> J e. ( TopOn ` ( X ^m A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptuniconst.2 | |- J = ( Xt_ ` ( A X. { R } ) ) |
|
| 2 | id | |- ( R e. ( TopOn ` X ) -> R e. ( TopOn ` X ) ) |
|
| 3 | 2 | ralrimivw | |- ( R e. ( TopOn ` X ) -> A. x e. A R e. ( TopOn ` X ) ) |
| 4 | fconstmpt | |- ( A X. { R } ) = ( x e. A |-> R ) |
|
| 5 | 4 | fveq2i | |- ( Xt_ ` ( A X. { R } ) ) = ( Xt_ ` ( x e. A |-> R ) ) |
| 6 | 1 5 | eqtri | |- J = ( Xt_ ` ( x e. A |-> R ) ) |
| 7 | 6 | pttopon | |- ( ( A e. V /\ A. x e. A R e. ( TopOn ` X ) ) -> J e. ( TopOn ` X_ x e. A X ) ) |
| 8 | 3 7 | sylan2 | |- ( ( A e. V /\ R e. ( TopOn ` X ) ) -> J e. ( TopOn ` X_ x e. A X ) ) |
| 9 | toponmax | |- ( R e. ( TopOn ` X ) -> X e. R ) |
|
| 10 | ixpconstg | |- ( ( A e. V /\ X e. R ) -> X_ x e. A X = ( X ^m A ) ) |
|
| 11 | 9 10 | sylan2 | |- ( ( A e. V /\ R e. ( TopOn ` X ) ) -> X_ x e. A X = ( X ^m A ) ) |
| 12 | 11 | fveq2d | |- ( ( A e. V /\ R e. ( TopOn ` X ) ) -> ( TopOn ` X_ x e. A X ) = ( TopOn ` ( X ^m A ) ) ) |
| 13 | 8 12 | eleqtrd | |- ( ( A e. V /\ R e. ( TopOn ` X ) ) -> J e. ( TopOn ` ( X ^m A ) ) ) |