This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cndis | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( ~P A Cn J ) = ( X ^m A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass | |- ( `' f " x ) C_ dom f |
|
| 2 | fdm | |- ( f : A --> X -> dom f = A ) |
|
| 3 | 2 | adantl | |- ( ( ( A e. V /\ J e. ( TopOn ` X ) ) /\ f : A --> X ) -> dom f = A ) |
| 4 | 1 3 | sseqtrid | |- ( ( ( A e. V /\ J e. ( TopOn ` X ) ) /\ f : A --> X ) -> ( `' f " x ) C_ A ) |
| 5 | elpw2g | |- ( A e. V -> ( ( `' f " x ) e. ~P A <-> ( `' f " x ) C_ A ) ) |
|
| 6 | 5 | ad2antrr | |- ( ( ( A e. V /\ J e. ( TopOn ` X ) ) /\ f : A --> X ) -> ( ( `' f " x ) e. ~P A <-> ( `' f " x ) C_ A ) ) |
| 7 | 4 6 | mpbird | |- ( ( ( A e. V /\ J e. ( TopOn ` X ) ) /\ f : A --> X ) -> ( `' f " x ) e. ~P A ) |
| 8 | 7 | ralrimivw | |- ( ( ( A e. V /\ J e. ( TopOn ` X ) ) /\ f : A --> X ) -> A. x e. J ( `' f " x ) e. ~P A ) |
| 9 | 8 | ex | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( f : A --> X -> A. x e. J ( `' f " x ) e. ~P A ) ) |
| 10 | 9 | pm4.71d | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( f : A --> X <-> ( f : A --> X /\ A. x e. J ( `' f " x ) e. ~P A ) ) ) |
| 11 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 12 | id | |- ( A e. V -> A e. V ) |
|
| 13 | elmapg | |- ( ( X e. J /\ A e. V ) -> ( f e. ( X ^m A ) <-> f : A --> X ) ) |
|
| 14 | 11 12 13 | syl2anr | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( f e. ( X ^m A ) <-> f : A --> X ) ) |
| 15 | distopon | |- ( A e. V -> ~P A e. ( TopOn ` A ) ) |
|
| 16 | iscn | |- ( ( ~P A e. ( TopOn ` A ) /\ J e. ( TopOn ` X ) ) -> ( f e. ( ~P A Cn J ) <-> ( f : A --> X /\ A. x e. J ( `' f " x ) e. ~P A ) ) ) |
|
| 17 | 15 16 | sylan | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( f e. ( ~P A Cn J ) <-> ( f : A --> X /\ A. x e. J ( `' f " x ) e. ~P A ) ) ) |
| 18 | 10 14 17 | 3bitr4rd | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( f e. ( ~P A Cn J ) <-> f e. ( X ^m A ) ) ) |
| 19 | 18 | eqrdv | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( ~P A Cn J ) = ( X ^m A ) ) |