This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istmd.1 | |- F = ( +f ` G ) |
|
| istmd.2 | |- J = ( TopOpen ` G ) |
||
| Assertion | istmd | |- ( G e. TopMnd <-> ( G e. Mnd /\ G e. TopSp /\ F e. ( ( J tX J ) Cn J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istmd.1 | |- F = ( +f ` G ) |
|
| 2 | istmd.2 | |- J = ( TopOpen ` G ) |
|
| 3 | elin | |- ( G e. ( Mnd i^i TopSp ) <-> ( G e. Mnd /\ G e. TopSp ) ) |
|
| 4 | 3 | anbi1i | |- ( ( G e. ( Mnd i^i TopSp ) /\ F e. ( ( J tX J ) Cn J ) ) <-> ( ( G e. Mnd /\ G e. TopSp ) /\ F e. ( ( J tX J ) Cn J ) ) ) |
| 5 | fvexd | |- ( f = G -> ( TopOpen ` f ) e. _V ) |
|
| 6 | simpl | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> f = G ) |
|
| 7 | 6 | fveq2d | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( +f ` f ) = ( +f ` G ) ) |
| 8 | 7 1 | eqtr4di | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( +f ` f ) = F ) |
| 9 | id | |- ( j = ( TopOpen ` f ) -> j = ( TopOpen ` f ) ) |
|
| 10 | fveq2 | |- ( f = G -> ( TopOpen ` f ) = ( TopOpen ` G ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( f = G -> ( TopOpen ` f ) = J ) |
| 12 | 9 11 | sylan9eqr | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> j = J ) |
| 13 | 12 12 | oveq12d | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( j tX j ) = ( J tX J ) ) |
| 14 | 13 12 | oveq12d | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( ( j tX j ) Cn j ) = ( ( J tX J ) Cn J ) ) |
| 15 | 8 14 | eleq12d | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( ( +f ` f ) e. ( ( j tX j ) Cn j ) <-> F e. ( ( J tX J ) Cn J ) ) ) |
| 16 | 5 15 | sbcied | |- ( f = G -> ( [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) <-> F e. ( ( J tX J ) Cn J ) ) ) |
| 17 | df-tmd | |- TopMnd = { f e. ( Mnd i^i TopSp ) | [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) } |
|
| 18 | 16 17 | elrab2 | |- ( G e. TopMnd <-> ( G e. ( Mnd i^i TopSp ) /\ F e. ( ( J tX J ) Cn J ) ) ) |
| 19 | df-3an | |- ( ( G e. Mnd /\ G e. TopSp /\ F e. ( ( J tX J ) Cn J ) ) <-> ( ( G e. Mnd /\ G e. TopSp ) /\ F e. ( ( J tX J ) Cn J ) ) ) |
|
| 20 | 4 18 19 | 3bitr4i | |- ( G e. TopMnd <-> ( G e. Mnd /\ G e. TopSp /\ F e. ( ( J tX J ) Cn J ) ) ) |