This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The discrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by FL, 17-Jul-2006) (Revised by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distop | |- ( A e. V -> ~P A e. Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss | |- ( x C_ ~P A -> U. x C_ U. ~P A ) |
|
| 2 | unipw | |- U. ~P A = A |
|
| 3 | 1 2 | sseqtrdi | |- ( x C_ ~P A -> U. x C_ A ) |
| 4 | vuniex | |- U. x e. _V |
|
| 5 | 4 | elpw | |- ( U. x e. ~P A <-> U. x C_ A ) |
| 6 | 3 5 | sylibr | |- ( x C_ ~P A -> U. x e. ~P A ) |
| 7 | 6 | ax-gen | |- A. x ( x C_ ~P A -> U. x e. ~P A ) |
| 8 | 7 | a1i | |- ( A e. V -> A. x ( x C_ ~P A -> U. x e. ~P A ) ) |
| 9 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 10 | velpw | |- ( y e. ~P A <-> y C_ A ) |
|
| 11 | ssinss1 | |- ( x C_ A -> ( x i^i y ) C_ A ) |
|
| 12 | 11 | a1i | |- ( y C_ A -> ( x C_ A -> ( x i^i y ) C_ A ) ) |
| 13 | vex | |- y e. _V |
|
| 14 | 13 | inex2 | |- ( x i^i y ) e. _V |
| 15 | 14 | elpw | |- ( ( x i^i y ) e. ~P A <-> ( x i^i y ) C_ A ) |
| 16 | 12 15 | imbitrrdi | |- ( y C_ A -> ( x C_ A -> ( x i^i y ) e. ~P A ) ) |
| 17 | 10 16 | sylbi | |- ( y e. ~P A -> ( x C_ A -> ( x i^i y ) e. ~P A ) ) |
| 18 | 17 | com12 | |- ( x C_ A -> ( y e. ~P A -> ( x i^i y ) e. ~P A ) ) |
| 19 | 9 18 | sylbi | |- ( x e. ~P A -> ( y e. ~P A -> ( x i^i y ) e. ~P A ) ) |
| 20 | 19 | ralrimiv | |- ( x e. ~P A -> A. y e. ~P A ( x i^i y ) e. ~P A ) |
| 21 | 20 | rgen | |- A. x e. ~P A A. y e. ~P A ( x i^i y ) e. ~P A |
| 22 | 21 | a1i | |- ( A e. V -> A. x e. ~P A A. y e. ~P A ( x i^i y ) e. ~P A ) |
| 23 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 24 | istopg | |- ( ~P A e. _V -> ( ~P A e. Top <-> ( A. x ( x C_ ~P A -> U. x e. ~P A ) /\ A. x e. ~P A A. y e. ~P A ( x i^i y ) e. ~P A ) ) ) |
|
| 25 | 23 24 | syl | |- ( A e. V -> ( ~P A e. Top <-> ( A. x ( x C_ ~P A -> U. x e. ~P A ) /\ A. x e. ~P A A. y e. ~P A ( x i^i y ) e. ~P A ) ) ) |
| 26 | 8 22 25 | mpbir2and | |- ( A e. V -> ~P A e. Top ) |