This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the auxiliary function S defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgsval2 | |- ( ( A e. Word W /\ B e. W /\ ( A ++ <" B "> ) e. dom S ) -> ( S ` ( A ++ <" B "> ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | 1 2 3 4 5 6 | efgsval | |- ( ( A ++ <" B "> ) e. dom S -> ( S ` ( A ++ <" B "> ) ) = ( ( A ++ <" B "> ) ` ( ( # ` ( A ++ <" B "> ) ) - 1 ) ) ) |
| 8 | s1cl | |- ( B e. W -> <" B "> e. Word W ) |
|
| 9 | ccatlen | |- ( ( A e. Word W /\ <" B "> e. Word W ) -> ( # ` ( A ++ <" B "> ) ) = ( ( # ` A ) + ( # ` <" B "> ) ) ) |
|
| 10 | 8 9 | sylan2 | |- ( ( A e. Word W /\ B e. W ) -> ( # ` ( A ++ <" B "> ) ) = ( ( # ` A ) + ( # ` <" B "> ) ) ) |
| 11 | s1len | |- ( # ` <" B "> ) = 1 |
|
| 12 | 11 | oveq2i | |- ( ( # ` A ) + ( # ` <" B "> ) ) = ( ( # ` A ) + 1 ) |
| 13 | 10 12 | eqtrdi | |- ( ( A e. Word W /\ B e. W ) -> ( # ` ( A ++ <" B "> ) ) = ( ( # ` A ) + 1 ) ) |
| 14 | 13 | oveq1d | |- ( ( A e. Word W /\ B e. W ) -> ( ( # ` ( A ++ <" B "> ) ) - 1 ) = ( ( ( # ` A ) + 1 ) - 1 ) ) |
| 15 | lencl | |- ( A e. Word W -> ( # ` A ) e. NN0 ) |
|
| 16 | 15 | nn0cnd | |- ( A e. Word W -> ( # ` A ) e. CC ) |
| 17 | ax-1cn | |- 1 e. CC |
|
| 18 | pncan | |- ( ( ( # ` A ) e. CC /\ 1 e. CC ) -> ( ( ( # ` A ) + 1 ) - 1 ) = ( # ` A ) ) |
|
| 19 | 16 17 18 | sylancl | |- ( A e. Word W -> ( ( ( # ` A ) + 1 ) - 1 ) = ( # ` A ) ) |
| 20 | 16 | addlidd | |- ( A e. Word W -> ( 0 + ( # ` A ) ) = ( # ` A ) ) |
| 21 | 19 20 | eqtr4d | |- ( A e. Word W -> ( ( ( # ` A ) + 1 ) - 1 ) = ( 0 + ( # ` A ) ) ) |
| 22 | 21 | adantr | |- ( ( A e. Word W /\ B e. W ) -> ( ( ( # ` A ) + 1 ) - 1 ) = ( 0 + ( # ` A ) ) ) |
| 23 | 14 22 | eqtrd | |- ( ( A e. Word W /\ B e. W ) -> ( ( # ` ( A ++ <" B "> ) ) - 1 ) = ( 0 + ( # ` A ) ) ) |
| 24 | 23 | fveq2d | |- ( ( A e. Word W /\ B e. W ) -> ( ( A ++ <" B "> ) ` ( ( # ` ( A ++ <" B "> ) ) - 1 ) ) = ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) ) |
| 25 | simpl | |- ( ( A e. Word W /\ B e. W ) -> A e. Word W ) |
|
| 26 | 8 | adantl | |- ( ( A e. Word W /\ B e. W ) -> <" B "> e. Word W ) |
| 27 | 1nn | |- 1 e. NN |
|
| 28 | 11 27 | eqeltri | |- ( # ` <" B "> ) e. NN |
| 29 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` <" B "> ) ) <-> ( # ` <" B "> ) e. NN ) |
|
| 30 | 28 29 | mpbir | |- 0 e. ( 0 ..^ ( # ` <" B "> ) ) |
| 31 | 30 | a1i | |- ( ( A e. Word W /\ B e. W ) -> 0 e. ( 0 ..^ ( # ` <" B "> ) ) ) |
| 32 | ccatval3 | |- ( ( A e. Word W /\ <" B "> e. Word W /\ 0 e. ( 0 ..^ ( # ` <" B "> ) ) ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( <" B "> ` 0 ) ) |
|
| 33 | 25 26 31 32 | syl3anc | |- ( ( A e. Word W /\ B e. W ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( <" B "> ` 0 ) ) |
| 34 | s1fv | |- ( B e. W -> ( <" B "> ` 0 ) = B ) |
|
| 35 | 34 | adantl | |- ( ( A e. Word W /\ B e. W ) -> ( <" B "> ` 0 ) = B ) |
| 36 | 24 33 35 | 3eqtrd | |- ( ( A e. Word W /\ B e. W ) -> ( ( A ++ <" B "> ) ` ( ( # ` ( A ++ <" B "> ) ) - 1 ) ) = B ) |
| 37 | 7 36 | sylan9eqr | |- ( ( ( A e. Word W /\ B e. W ) /\ ( A ++ <" B "> ) e. dom S ) -> ( S ` ( A ++ <" B "> ) ) = B ) |
| 38 | 37 | 3impa | |- ( ( A e. Word W /\ B e. W /\ ( A ++ <" B "> ) e. dom S ) -> ( S ` ( A ++ <" B "> ) ) = B ) |