This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The differentiable predicate. A function F is differentiable at B with derivative C iff F is defined in a neighborhood of B and the difference quotient has limit C at B . (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvval.t | |- T = ( K |`t S ) |
|
| dvval.k | |- K = ( TopOpen ` CCfld ) |
||
| eldv.g | |- G = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
||
| eldv.s | |- ( ph -> S C_ CC ) |
||
| eldv.f | |- ( ph -> F : A --> CC ) |
||
| eldv.a | |- ( ph -> A C_ S ) |
||
| Assertion | eldv | |- ( ph -> ( B ( S _D F ) C <-> ( B e. ( ( int ` T ) ` A ) /\ C e. ( G limCC B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvval.t | |- T = ( K |`t S ) |
|
| 2 | dvval.k | |- K = ( TopOpen ` CCfld ) |
|
| 3 | eldv.g | |- G = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
|
| 4 | eldv.s | |- ( ph -> S C_ CC ) |
|
| 5 | eldv.f | |- ( ph -> F : A --> CC ) |
|
| 6 | eldv.a | |- ( ph -> A C_ S ) |
|
| 7 | 1 2 | dvfval | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) ) |
| 8 | 4 5 6 7 | syl3anc | |- ( ph -> ( ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) ) |
| 9 | 8 | simpld | |- ( ph -> ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 10 | 9 | eleq2d | |- ( ph -> ( <. B , C >. e. ( S _D F ) <-> <. B , C >. e. U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
| 11 | df-br | |- ( B ( S _D F ) C <-> <. B , C >. e. ( S _D F ) ) |
|
| 12 | 11 | bicomi | |- ( <. B , C >. e. ( S _D F ) <-> B ( S _D F ) C ) |
| 13 | sneq | |- ( x = B -> { x } = { B } ) |
|
| 14 | 13 | difeq2d | |- ( x = B -> ( A \ { x } ) = ( A \ { B } ) ) |
| 15 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 16 | 15 | oveq2d | |- ( x = B -> ( ( F ` z ) - ( F ` x ) ) = ( ( F ` z ) - ( F ` B ) ) ) |
| 17 | oveq2 | |- ( x = B -> ( z - x ) = ( z - B ) ) |
|
| 18 | 16 17 | oveq12d | |- ( x = B -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
| 19 | 14 18 | mpteq12dv | |- ( x = B -> ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) |
| 20 | 19 3 | eqtr4di | |- ( x = B -> ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = G ) |
| 21 | id | |- ( x = B -> x = B ) |
|
| 22 | 20 21 | oveq12d | |- ( x = B -> ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) = ( G limCC B ) ) |
| 23 | 22 | opeliunxp2 | |- ( <. B , C >. e. U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) <-> ( B e. ( ( int ` T ) ` A ) /\ C e. ( G limCC B ) ) ) |
| 24 | 10 12 23 | 3bitr3g | |- ( ph -> ( B ( S _D F ) C <-> ( B e. ( ( int ` T ) ` A ) /\ C e. ( G limCC B ) ) ) ) |