This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvlem.1 | |- ( ph -> F : D --> CC ) |
|
| dvlem.2 | |- ( ph -> D C_ CC ) |
||
| dvlem.3 | |- ( ph -> B e. D ) |
||
| Assertion | dvlem | |- ( ( ph /\ A e. ( D \ { B } ) ) -> ( ( ( F ` A ) - ( F ` B ) ) / ( A - B ) ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlem.1 | |- ( ph -> F : D --> CC ) |
|
| 2 | dvlem.2 | |- ( ph -> D C_ CC ) |
|
| 3 | dvlem.3 | |- ( ph -> B e. D ) |
|
| 4 | eldifsn | |- ( A e. ( D \ { B } ) <-> ( A e. D /\ A =/= B ) ) |
|
| 5 | 1 | adantr | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> F : D --> CC ) |
| 6 | simprl | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A e. D ) |
|
| 7 | 5 6 | ffvelcdmd | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( F ` A ) e. CC ) |
| 8 | 3 | adantr | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> B e. D ) |
| 9 | 5 8 | ffvelcdmd | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( F ` B ) e. CC ) |
| 10 | 7 9 | subcld | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( ( F ` A ) - ( F ` B ) ) e. CC ) |
| 11 | 2 | adantr | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> D C_ CC ) |
| 12 | 11 6 | sseldd | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A e. CC ) |
| 13 | 11 8 | sseldd | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> B e. CC ) |
| 14 | 12 13 | subcld | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( A - B ) e. CC ) |
| 15 | simprr | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A =/= B ) |
|
| 16 | 12 13 15 | subne0d | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( A - B ) =/= 0 ) |
| 17 | 10 14 16 | divcld | |- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( ( ( F ` A ) - ( F ` B ) ) / ( A - B ) ) e. CC ) |
| 18 | 4 17 | sylan2b | |- ( ( ph /\ A e. ( D \ { B } ) ) -> ( ( ( F ` A ) - ( F ` B ) ) / ( A - B ) ) e. CC ) |