This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | ntrin | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) = ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | inss1 | |- ( A i^i B ) C_ A |
|
| 3 | 1 | ntrss | |- ( ( J e. Top /\ A C_ X /\ ( A i^i B ) C_ A ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
| 4 | 2 3 | mp3an3 | |- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
| 5 | 4 | 3adant3 | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
| 6 | inss2 | |- ( A i^i B ) C_ B |
|
| 7 | 1 | ntrss | |- ( ( J e. Top /\ B C_ X /\ ( A i^i B ) C_ B ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
| 8 | 6 7 | mp3an3 | |- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
| 9 | 8 | 3adant2 | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
| 10 | 5 9 | ssind | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) ) |
| 11 | simp1 | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> J e. Top ) |
|
| 12 | ssinss1 | |- ( A C_ X -> ( A i^i B ) C_ X ) |
|
| 13 | 12 | 3ad2ant2 | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( A i^i B ) C_ X ) |
| 14 | 1 | ntropn | |- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) e. J ) |
| 15 | 14 | 3adant3 | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` A ) e. J ) |
| 16 | 1 | ntropn | |- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` B ) e. J ) |
| 17 | 16 | 3adant2 | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` B ) e. J ) |
| 18 | inopn | |- ( ( J e. Top /\ ( ( int ` J ) ` A ) e. J /\ ( ( int ` J ) ` B ) e. J ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J ) |
|
| 19 | 11 15 17 18 | syl3anc | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J ) |
| 20 | inss1 | |- ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` A ) |
|
| 21 | 1 | ntrss2 | |- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) C_ A ) |
| 22 | 21 | 3adant3 | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` A ) C_ A ) |
| 23 | 20 22 | sstrid | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ A ) |
| 24 | inss2 | |- ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` B ) |
|
| 25 | 1 | ntrss2 | |- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` B ) C_ B ) |
| 26 | 25 | 3adant2 | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` B ) C_ B ) |
| 27 | 24 26 | sstrid | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ B ) |
| 28 | 23 27 | ssind | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( A i^i B ) ) |
| 29 | 1 | ssntr | |- ( ( ( J e. Top /\ ( A i^i B ) C_ X ) /\ ( ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J /\ ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( A i^i B ) ) ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` ( A i^i B ) ) ) |
| 30 | 11 13 19 28 29 | syl22anc | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` ( A i^i B ) ) ) |
| 31 | 10 30 | eqssd | |- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) = ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) ) |