This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011) (Proof shortened by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresin | |- ( F : A --> B -> ( F |` X ) : ( A i^i X ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | |- ( A i^i X ) C_ A |
|
| 2 | fssres | |- ( ( F : A --> B /\ ( A i^i X ) C_ A ) -> ( F |` ( A i^i X ) ) : ( A i^i X ) --> B ) |
|
| 3 | 1 2 | mpan2 | |- ( F : A --> B -> ( F |` ( A i^i X ) ) : ( A i^i X ) --> B ) |
| 4 | resres | |- ( ( F |` A ) |` X ) = ( F |` ( A i^i X ) ) |
|
| 5 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 6 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 7 | 5 6 | syl | |- ( F : A --> B -> ( F |` A ) = F ) |
| 8 | 7 | reseq1d | |- ( F : A --> B -> ( ( F |` A ) |` X ) = ( F |` X ) ) |
| 9 | 4 8 | eqtr3id | |- ( F : A --> B -> ( F |` ( A i^i X ) ) = ( F |` X ) ) |
| 10 | 9 | feq1d | |- ( F : A --> B -> ( ( F |` ( A i^i X ) ) : ( A i^i X ) --> B <-> ( F |` X ) : ( A i^i X ) --> B ) ) |
| 11 | 3 10 | mpbid | |- ( F : A --> B -> ( F |` X ) : ( A i^i X ) --> B ) |