This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of fsumdvdsmul as of 18-Apr-2025. (Contributed by Mario Carneiro, 2-Jul-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsmulf1o.1 | |- ( ph -> M e. NN ) |
|
| dvdsmulf1o.2 | |- ( ph -> N e. NN ) |
||
| dvdsmulf1o.3 | |- ( ph -> ( M gcd N ) = 1 ) |
||
| dvdsmulf1o.x | |- X = { x e. NN | x || M } |
||
| dvdsmulf1o.y | |- Y = { x e. NN | x || N } |
||
| dvdsmulf1o.z | |- Z = { x e. NN | x || ( M x. N ) } |
||
| fsumdvdsmulOLD.4 | |- ( ( ph /\ j e. X ) -> A e. CC ) |
||
| fsumdvdsmulOLD.5 | |- ( ( ph /\ k e. Y ) -> B e. CC ) |
||
| fsumdvdsmulOLD.6 | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> ( A x. B ) = D ) |
||
| fsumdvdsmulOLD.7 | |- ( i = ( j x. k ) -> C = D ) |
||
| Assertion | fsumdvdsmulOLD | |- ( ph -> ( sum_ j e. X A x. sum_ k e. Y B ) = sum_ i e. Z C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmulf1o.1 | |- ( ph -> M e. NN ) |
|
| 2 | dvdsmulf1o.2 | |- ( ph -> N e. NN ) |
|
| 3 | dvdsmulf1o.3 | |- ( ph -> ( M gcd N ) = 1 ) |
|
| 4 | dvdsmulf1o.x | |- X = { x e. NN | x || M } |
|
| 5 | dvdsmulf1o.y | |- Y = { x e. NN | x || N } |
|
| 6 | dvdsmulf1o.z | |- Z = { x e. NN | x || ( M x. N ) } |
|
| 7 | fsumdvdsmulOLD.4 | |- ( ( ph /\ j e. X ) -> A e. CC ) |
|
| 8 | fsumdvdsmulOLD.5 | |- ( ( ph /\ k e. Y ) -> B e. CC ) |
|
| 9 | fsumdvdsmulOLD.6 | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> ( A x. B ) = D ) |
|
| 10 | fsumdvdsmulOLD.7 | |- ( i = ( j x. k ) -> C = D ) |
|
| 11 | fzfid | |- ( ph -> ( 1 ... M ) e. Fin ) |
|
| 12 | dvdsssfz1 | |- ( M e. NN -> { x e. NN | x || M } C_ ( 1 ... M ) ) |
|
| 13 | 1 12 | syl | |- ( ph -> { x e. NN | x || M } C_ ( 1 ... M ) ) |
| 14 | 4 13 | eqsstrid | |- ( ph -> X C_ ( 1 ... M ) ) |
| 15 | 11 14 | ssfid | |- ( ph -> X e. Fin ) |
| 16 | fzfid | |- ( ph -> ( 1 ... N ) e. Fin ) |
|
| 17 | dvdsssfz1 | |- ( N e. NN -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
|
| 18 | 2 17 | syl | |- ( ph -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
| 19 | 5 18 | eqsstrid | |- ( ph -> Y C_ ( 1 ... N ) ) |
| 20 | 16 19 | ssfid | |- ( ph -> Y e. Fin ) |
| 21 | 20 8 | fsumcl | |- ( ph -> sum_ k e. Y B e. CC ) |
| 22 | 15 21 7 | fsummulc1 | |- ( ph -> ( sum_ j e. X A x. sum_ k e. Y B ) = sum_ j e. X ( A x. sum_ k e. Y B ) ) |
| 23 | 20 | adantr | |- ( ( ph /\ j e. X ) -> Y e. Fin ) |
| 24 | 8 | adantlr | |- ( ( ( ph /\ j e. X ) /\ k e. Y ) -> B e. CC ) |
| 25 | 23 7 24 | fsummulc2 | |- ( ( ph /\ j e. X ) -> ( A x. sum_ k e. Y B ) = sum_ k e. Y ( A x. B ) ) |
| 26 | 9 | anassrs | |- ( ( ( ph /\ j e. X ) /\ k e. Y ) -> ( A x. B ) = D ) |
| 27 | 26 | sumeq2dv | |- ( ( ph /\ j e. X ) -> sum_ k e. Y ( A x. B ) = sum_ k e. Y D ) |
| 28 | 25 27 | eqtrd | |- ( ( ph /\ j e. X ) -> ( A x. sum_ k e. Y B ) = sum_ k e. Y D ) |
| 29 | 28 | sumeq2dv | |- ( ph -> sum_ j e. X ( A x. sum_ k e. Y B ) = sum_ j e. X sum_ k e. Y D ) |
| 30 | fveq2 | |- ( z = <. j , k >. -> ( x. ` z ) = ( x. ` <. j , k >. ) ) |
|
| 31 | df-ov | |- ( j x. k ) = ( x. ` <. j , k >. ) |
|
| 32 | 30 31 | eqtr4di | |- ( z = <. j , k >. -> ( x. ` z ) = ( j x. k ) ) |
| 33 | 32 | csbeq1d | |- ( z = <. j , k >. -> [_ ( x. ` z ) / i ]_ C = [_ ( j x. k ) / i ]_ C ) |
| 34 | ovex | |- ( j x. k ) e. _V |
|
| 35 | 34 10 | csbie | |- [_ ( j x. k ) / i ]_ C = D |
| 36 | 33 35 | eqtrdi | |- ( z = <. j , k >. -> [_ ( x. ` z ) / i ]_ C = D ) |
| 37 | 7 | adantrr | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> A e. CC ) |
| 38 | 8 | adantrl | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> B e. CC ) |
| 39 | 37 38 | mulcld | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> ( A x. B ) e. CC ) |
| 40 | 9 39 | eqeltrrd | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> D e. CC ) |
| 41 | 36 15 20 40 | fsumxp | |- ( ph -> sum_ j e. X sum_ k e. Y D = sum_ z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C ) |
| 42 | csbeq1a | |- ( i = w -> C = [_ w / i ]_ C ) |
|
| 43 | nfcv | |- F/_ w C |
|
| 44 | nfcsb1v | |- F/_ i [_ w / i ]_ C |
|
| 45 | 42 43 44 | cbvsum | |- sum_ i e. Z C = sum_ w e. Z [_ w / i ]_ C |
| 46 | csbeq1 | |- ( w = ( x. ` z ) -> [_ w / i ]_ C = [_ ( x. ` z ) / i ]_ C ) |
|
| 47 | xpfi | |- ( ( X e. Fin /\ Y e. Fin ) -> ( X X. Y ) e. Fin ) |
|
| 48 | 15 20 47 | syl2anc | |- ( ph -> ( X X. Y ) e. Fin ) |
| 49 | 1 2 3 4 5 6 | dvdsmulf1o | |- ( ph -> ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z ) |
| 50 | fvres | |- ( z e. ( X X. Y ) -> ( ( x. |` ( X X. Y ) ) ` z ) = ( x. ` z ) ) |
|
| 51 | 50 | adantl | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( x. |` ( X X. Y ) ) ` z ) = ( x. ` z ) ) |
| 52 | 40 | ralrimivva | |- ( ph -> A. j e. X A. k e. Y D e. CC ) |
| 53 | 36 | eleq1d | |- ( z = <. j , k >. -> ( [_ ( x. ` z ) / i ]_ C e. CC <-> D e. CC ) ) |
| 54 | 53 | ralxp | |- ( A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC <-> A. j e. X A. k e. Y D e. CC ) |
| 55 | 52 54 | sylibr | |- ( ph -> A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC ) |
| 56 | ax-mulf | |- x. : ( CC X. CC ) --> CC |
|
| 57 | ffn | |- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
|
| 58 | 56 57 | ax-mp | |- x. Fn ( CC X. CC ) |
| 59 | 4 | ssrab3 | |- X C_ NN |
| 60 | nnsscn | |- NN C_ CC |
|
| 61 | 59 60 | sstri | |- X C_ CC |
| 62 | 5 | ssrab3 | |- Y C_ NN |
| 63 | 62 60 | sstri | |- Y C_ CC |
| 64 | xpss12 | |- ( ( X C_ CC /\ Y C_ CC ) -> ( X X. Y ) C_ ( CC X. CC ) ) |
|
| 65 | 61 63 64 | mp2an | |- ( X X. Y ) C_ ( CC X. CC ) |
| 66 | 46 | eleq1d | |- ( w = ( x. ` z ) -> ( [_ w / i ]_ C e. CC <-> [_ ( x. ` z ) / i ]_ C e. CC ) ) |
| 67 | 66 | ralima | |- ( ( x. Fn ( CC X. CC ) /\ ( X X. Y ) C_ ( CC X. CC ) ) -> ( A. w e. ( x. " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC ) ) |
| 68 | 58 65 67 | mp2an | |- ( A. w e. ( x. " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC ) |
| 69 | df-ima | |- ( x. " ( X X. Y ) ) = ran ( x. |` ( X X. Y ) ) |
|
| 70 | f1ofo | |- ( ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z -> ( x. |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z ) |
|
| 71 | forn | |- ( ( x. |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z -> ran ( x. |` ( X X. Y ) ) = Z ) |
|
| 72 | 49 70 71 | 3syl | |- ( ph -> ran ( x. |` ( X X. Y ) ) = Z ) |
| 73 | 69 72 | eqtrid | |- ( ph -> ( x. " ( X X. Y ) ) = Z ) |
| 74 | 73 | raleqdv | |- ( ph -> ( A. w e. ( x. " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. w e. Z [_ w / i ]_ C e. CC ) ) |
| 75 | 68 74 | bitr3id | |- ( ph -> ( A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC <-> A. w e. Z [_ w / i ]_ C e. CC ) ) |
| 76 | 55 75 | mpbid | |- ( ph -> A. w e. Z [_ w / i ]_ C e. CC ) |
| 77 | 76 | r19.21bi | |- ( ( ph /\ w e. Z ) -> [_ w / i ]_ C e. CC ) |
| 78 | 46 48 49 51 77 | fsumf1o | |- ( ph -> sum_ w e. Z [_ w / i ]_ C = sum_ z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C ) |
| 79 | 45 78 | eqtrid | |- ( ph -> sum_ i e. Z C = sum_ z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C ) |
| 80 | 41 79 | eqtr4d | |- ( ph -> sum_ j e. X sum_ k e. Y D = sum_ i e. Z C ) |
| 81 | 22 29 80 | 3eqtrd | |- ( ph -> ( sum_ j e. X A x. sum_ k e. Y B ) = sum_ i e. Z C ) |