This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in ApostolNT p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdscmul | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 2 | zmulcl | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
|
| 3 | 2 | 3adant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) e. ZZ ) |
| 4 | zmulcl | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
|
| 5 | 4 | 3adant2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
| 6 | 3 5 | jca | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) ) |
| 7 | simpr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 8 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 9 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 10 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 11 | mul12 | |- ( ( x e. CC /\ K e. CC /\ M e. CC ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
|
| 12 | 8 9 10 11 | syl3an | |- ( ( x e. ZZ /\ K e. ZZ /\ M e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
| 13 | 12 | 3coml | |- ( ( K e. ZZ /\ M e. ZZ /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
| 14 | 13 | 3expa | |- ( ( ( K e. ZZ /\ M e. ZZ ) /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
| 15 | 14 | 3adantl3 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
| 16 | oveq2 | |- ( ( x x. M ) = N -> ( K x. ( x x. M ) ) = ( K x. N ) ) |
|
| 17 | 15 16 | sylan9eq | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) /\ ( x x. M ) = N ) -> ( x x. ( K x. M ) ) = ( K x. N ) ) |
| 18 | 17 | ex | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( x x. ( K x. M ) ) = ( K x. N ) ) ) |
| 19 | 1 6 7 18 | dvds1lem | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |
| 20 | 19 | 3coml | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |